Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Evidence for a maximum jet efficiency for the most powerful radio galaxies

Monthly Notices of the Royal Astronomical Society 411:3 (2011) 1909-1916

Authors:

CAC Fernandes, MJ Jarvis, S Rawlings, A Martínez-Sansigre, E Hatziminaoglou, M Lacy, MJ Page, JA Stevens, E Vardoulaki

Abstract:

We use new mid-infrared (mid-IR) photometry from the Spitzer Space Telescope to study the relations between low-frequency radio luminosity density, mid-IR (12μm rest frame) luminosity and optical emission-line ([Oii]) luminosity L]Oii], for a complete sample of z∼ 1 radio galaxies from the 3CRR, 6CE, 6C*, 7CRS and TOOT00 surveys. The narrow redshift span of our sample (0.9 < z < 1.1) means that it is unbiased to evolutionary effects. We find evidence that these three quantities are positively correlated. The scaling between and L[Oii] is similar to that seen in other active galactic nuclei samples, consistent with both and L[Oii] tracing accretion rate. We show that the positive correlation between and implies that there is a genuine lack of objects with low values of at high values of Given that traces accretion rate, while traces jet power, this can be understood in terms of a minimum accretion rate being necessary to produce a given jet power. This implies that there is a maximum efficiency with which accreted energy can be chanelled into jet power and this efficiency is of the order of unity. © 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS

Monthly Notices of the Royal Astronomical Society 415:4 (2011) 3473-3484

Authors:

I Valtchanov, J Virdee, RJ Ivison, B Swinyard, P van der Werf, D Rigopoulou, E da Cunha, R Lupu, DJ Benford, D Riechers, I Smail, M Jarvis, C Pearson, H Gomez, R Hopwood, B Altieri, M Birkinshaw, D Coia, L Conversi, A Cooray, G de Zotti, L Dunne, D Frayer, L Leeuw, A Marston, M Negrello, MS Portal, D Scott, MA Thompson, M Vaccari, M Baes, D Clements, MJ Michalowski, H Dannerbauer, S Serjeant, R Auld, S Buttiglione, A Cava, A Dariush, S Dye, S Eales, J Fritz, E Ibar, S Maddox, E Pascale, M Pohlen, E Rigby, G Rodighiero, DJB Smith, P Temi, J Carpenter, A Bolatto, M Gurwell, JD Vieira

Abstract:

We present Herschel-Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) and radio follow-up observations of two Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)-detected strongly lensed distant galaxies. In one of the targeted galaxies H-ATLAS J090311.6+003906 (SDP.81), we detect [Oiii]88μm and [Cii]158μm lines at a signal-to-noise ratio of ~5. We do not have any positive line identification in the other fainter target H-ATLAS J091305.0-005343 (SDP.130). Currently, SDP.81 is the faintest submillimetre galaxy with positive line detections with the FTS, with continuum flux just below 200mJy in the 200-600μm wavelength range. The derived redshift of SDP.81 from the two detections isz= 3.043 ± 0.012, in agreement with ground-based CO measurements. This is the first detection byHerschelof the [Oiii]88μm line in a galaxy at redshift higher than 0.05. Comparing the observed lines and line ratios with a grid of photodissociation region (PDR) models with different physical conditions, we derive the PDR cloud densityn≈ 2000cm-3 and the far-ultraviolet ionizing radiation fieldG0≈ 200 (in units of the Habing field - the local Galactic interstellar radiation field of 1.6 × 10-6 W m-2). Using the CO-derived molecular mass and the PDR properties, we estimate the effective radius of the emitting region to be 500-700pc. These characteristics are typical for star-forming, high-redshift galaxies. The radio observations indicate that SDP.81 deviates significantly from the local far-infrared/radio (FIR/radio) correlation, which hints that some fraction of the radio emission is coming from an active galactic nucleus (AGN). The constraints on the source size from millimetre-wave observations put a very conservative upper limit of the possible AGN contribution to less than 33 per cent. These indications, together with the high [Oiii]/FIR ratio and the upper limit of [Oi]63μm/[Cii]158μm, suggest that some fraction of the ionizing radiation is likely to originate from the AGN. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher
More details

Star-forming galaxies at z≈ 8-9 from Hubble Space Telescope/WFC3: Implications for reionization

Monthly Notices of the Royal Astronomical Society 414:2 (2011) 1455-1466

Authors:

S Lorenzoni, AJ Bunker, SM Wilkins, ER Stanway, MJ Jarvis, J Caruana

Abstract:

We present a search for galaxies at 7.6 < z < 9.8 using the latest Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared data, based on the Lyman-break technique. We search for galaxies which have large (Y-J) colours (the 'Y-drops') on account of the Lyman α forest absorption, and with (J-H) colours inconsistent with being low-redshift contaminants. We identify 24 candidates at redshift z≈ 8-9 (15 are robust and a further nine more marginal but consistent with being high redshift) over an area of ≈50arcmin2. Previous searches for Y-drops with WFC3 have focused only on the Hubble Ultra Deep Field, and our larger survey (involving two other nearby deep fields and a wider area survey) has trebled the number of robust Y-drop candidates. For the first time, we have sufficient z≈ 8-9 galaxies to fit both φ* and M* of the UV Schechter luminosity function. There is evidence for evolution in this luminosity function from z= 6-7 to z= 8-9, in the sense that there are fewer UV-bright galaxies at z≈ 8-9, consistent with an evolution mainly in M*. The candidate z≈ 8-9 galaxies we detect have insufficient ionizing flux to reionize the Universe, and it is probable that galaxies below our detection limit provide a significant UV contribution. The faint-end slope, α, is not well constrained. However, adopting a similar faint-end slope to that determined at z= 3-6 (α=-1.7) and a Salpeter initial mass function (IMF), then the ionizing photon budget still falls short if fesc < 0.5, even integrating down to MUV=-8. A steeper faint-end slope or a low-metallicity population (or a top-heavy IMF) might still provide sufficient photons for star-forming galaxies to reionize the Universe, but confirmation of this might have to await the James Webb Space Telescope. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher
Details from ArXiV

The evolution of the Fundamental Plane of radio galaxies from z~ 0.5 to the present day

Monthly Notices of the Royal Astronomical Society 410:2 (2011) 1360-1376

Authors:

PD Herbert, MJ Jarvis, CJ Willott, RJ McLure, E Mitchell, S Rawlings, GJ Hill, JS Dunlop

Abstract:

We present deep spectroscopic data for a 24-object subsample of our full 41-object z~ 0.5 radio galaxy sample in order to investigate the evolution of the Fundamental Plane of radio galaxies. We find that the low-luminosity, Fanaroff-Riley type I (FRI), radio galaxies in our sample are consistent with the local Fundamental Plane of radio galaxies defined by Bettoni et al. when corrected for simple passive evolution of their stellar populations. However, we find that the higher luminosity, Fanaroff-Riley type II (FRII), radio galaxies are inconsistent with the local Fundamental Plane if only passive evolution is considered, and find evidence for a rotation in the Fundamental Plane at z~ 0.5 when compared with the local relation. We show that neither passive evolution, nor a mass-dependent evolution in the mass-to-light ratio, nor an evolution in the size of the host galaxies can, by themselves, plausibly explain the observed tilt. However, we suggest that some combination of all three effects, with size evolution as the dominant factor, may be sufficient to explain the difference between the planes.We also find evidence for a correlation between host galaxy velocity dispersion and radio luminosity at the 97 per cent significance level within our subsample, although further observations are required in order to determine whether this is different for the FRI and FRII radio sources. Assuming that the MBH-σ relation still holds at z~ 0.5, this implies that radio luminosity scales with black hole mass, in agreement with previous studies. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

Green Bank Telescope Zpectrometer CO(1-0) observations of the strongly lensed submillimeter galaxies From the Herschel ATLAS

Astrophysical Journal 726:2 PART II (2011)

Authors:

DT Frayer, AI Harris, AJ Baker, RJ Ivison, I Smail, M Negrello, R Maddalena, I Aretxaga, M Baes, M Birkinshaw, DG Bonfield, D Burgarella, S Buttiglione, A Cava, DL Clements, A Cooray, H Dannerbauer, A Dariush, G De Zotti, JS Dunlop, L Dunne, S Dye, S Eales, J Fritz, J Gonzalez-Nuevo, D Herranz, R Hopwood, DH Hughes, E Ibar, MJ Jarvis, G Lagache, LL Leeuw, M Lopez-Caniego, S Maddox, MJ Michałlowski, A Omont, M Pohlen, E Rigby, G Rodighiero, D Scott, S Serjeant, DJB Smith, AM Swinbank, P Temi, MA Thompson, I Valtchanov, PP Van Der Werf, A Verma
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Current page 74
  • Page 75
  • Page 76
  • Page 77
  • Page 78
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet