Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

An infrared-radio simulation of the extragalactic sky: From the Square Kilometre Array to Herschel

Monthly Notices of the Royal Astronomical Society 405:1 (2010) 447-461

Authors:

RJ Wilman, MJ Jarvis, T Mauch, S Rawlings, S Hickey

Abstract:

To exploit synergies between the Herschel Space Observatory and next generation radio facilities, we have extended the semi-empirical extragalactic radio continuum simulation of Wilman et al. to the mid- and far-infrared. Here, we describe the assignment of infrared spectral energy distributions (SEDs) to the star-forming galaxies and active galactic nuclei, using Spitzer 24, 70 and 160 μm and SCUBA 850 μm survey results as the main constraints.Star-forming galaxies dominate the source counts, and a model in which their far-infrared-radio correlation and infrared SED assignment procedure are invariant with redshift underpredicts the observed 24 and 70 μm source counts. The 70 μm deficit can be eliminated if the star-forming galaxies undergo stronger luminosity evolution than originally assumed for the radio simulation, a requirement which may be partially ascribed to known non-linearity in the far-infrared-radio correlation at low luminosity if it evolves with redshift. At 24 μm, the shortfall is reduced if the star-forming galaxies develop SEDs with cooler dust and correspondingly stronger polycyclic aromatic hydrocarbon emission features with increasing redshift at a given far-infrared luminosity, but this trend may reverse at z > 1 in order not to overproduce the submillimetre source counts. The resulting model compares favourably with recent Balloon-borne Large Aperture Submillimetre Telescope (BLAST) results, and we have extended the simulation data base to aid the interpretation of Herschel surveys. Such comparisons may also facilitate further model refinement and revised predictions for the Square Kilometre Array and its precursors. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

Constraints on star-forming galaxies at z ≥ 6.5 from HAWK-I Y-band imaging of GOODS-South

Monthly Notices of the Royal Astronomical Society 404:1 (2010) 212-223

Authors:

S Hickey, A Bunker, MJ Jarvis, K Chiu, D Bonfield

Abstract:

We present the results of our search for high-redshift Lyman-break galaxies over the GOODS-South field. We use Hubble Space Telescope (HST)-ACS data in B, V, i′ & z′, Very Large Telescope (VLT)-ISAAC J and Ks, Spitzer-Infrared Array Camera (IRAC) 3.6, 4.5, 5.8 and 8.0 μm data in conjunction with the new HAWK-I Y-band science verification data to search for dropout galaxies in the redshift range 6 < z < 9. We survey ≈119 arcmin2 to YAB = 25.7 (5σ), of which 37.5 arcmin2 reaches YAB = 25.9. Candidate z′ and Y dropouts were selected on the basis of a colour cut of (Y - J)AB > 0.75 mag and (z′ - Y)AB > 1.0 mag, respectively. We find no robust Y-drops (z ≈ 9) brighter than JAB < 25.4. In our search for z′-band dropouts (z ≈ 6.5-7.5), we identify four possible candidates, two with z′-drop colours and clear Spitzer-IRAC detections and two less likely candidates. We also identify two previously known Galactic T-dwarf stellar contaminants with these colours, and two likely transient objects seen in the Y-band data. The implications if all or none of our candidates is real on the ultraviolet galaxy luminosity functions at z > 6.5 are explored. We find our number of z′-drop candidates to be insufficient based on the expected number of z′ drops in a simple no-evolution scenario from the z = 3 Lyman-break galaxy luminosity function but we are consistent with the observed luminosity function at z ≈ 6 (if all our candidates are real). However, if one or both of our best z′-drop candidates are not z > 6.5 galaxies, this would demand evolution of the luminosity function at early epochs, in the sense that the number density of ultraviolet luminous star- forming galaxies at z > 7 is less than at z ~ 6. We show that the future surveys to be conducted with the European Southern Observatory VISTA telescope over the next 5 yr will be able to measure the bulk of the luminosity function for both z′ and Y dropouts and thus provide the strongest constraints on the level of star-formation within the epoch of reionization. © 2010 The Authors. Journal compilation. © 2010 RAS.
More details from the publisher
Details from ArXiV

Evidence of different star formation histories for high- and low-luminosity radio galaxies

Monthly Notices of the Royal Astronomical Society 406:3 (2010) 1841-1847

Authors:

PD Herbert, MJ Jarvis, CJ Willott, RJ McLure, E Mitchell, S Rawlings, GJ Hill, JS Dunlop

Abstract:

We present the results of our investigation into the stellar populations of 24 radio galaxies at z ≃ 0.5 drawn from four complete, low-frequency-selected radio surveys. We use the strength of the 4000-Å break as an indicator of recent star formation and compare this with radio luminosity, optical spectral classification and morphological classification. We find evidence of different star formation histories for high- and low-luminosity radio sources; our group of low radio luminosity sources (typically Fanaroff-Riley type I sources) has systematically older stellar populations than the higher radio luminosity group. Our sample is also fairly well divided by optical spectral classification. We find that galaxies classified as having low excitation spectra (LEGs) possess older stellar populations than high excitation line objects (HEGs), with the HEGs showing evidence for recent star formation. We also investigate the link between radio morphology, as used by Owen and Laing, and the stellar populations. We find that there is a preference for the 'fat-double' sources to have older stellar populations than the 'classical double' sources, although this is also linked to these sources lying predominantly in the LEG and HEG categories, respectively. These results are consistent with the hypothesis that HEGs are powered by accretion of cold gas, which could be supplied, for example, by recent mergers, secular instabilities or filamentary cold flows. These processes could also trigger star formation in the host galaxy. The host galaxies of the LEGs do not show evidence for recent star formation and an influx of cold gas and are consistent with being powered by the accretion of the hot phase of the interstellar medium. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

H-ATLAS: PACS imaging for the Science Demonstration Phase

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 38-47

Authors:

E Ibar, RJ Ivison, A Cava, G Rodighiero, S Buttiglione, P Temi, D Frayer, J Fritz, L Leeuw, M Baes, E Rigby, A Verma, S Serjeant, T Müller, R Auld, A Dariush, L Dunne, S Eales, S Maddox, P Panuzzo, E Pascale, M Pohlen, D Smith, GD Zotti, M Vaccari, R Hopwood, A Cooray, D Burgarella, M Jarvis

Abstract:

We describe the reduction of data taken with the PACS instrument on board the Herschel Space Observatory in the Science Demonstration Phase of the Herschel-ATLAS (H-ATLAS) survey, specifically data obtained for a 4 × 4 deg2 region using Herschel's fast-scan (60 arcsec s-1) parallel mode. We describe in detail a pipeline for data reduction using customized procedures within hipe from data retrieval to the production of science-quality images. We found that the standard procedure for removing cosmic ray glitches also removed parts of bright sources and so implemented an effective two-stage process to minimize these problems. The pronounced 1/f noise is removed from the timelines using 3.4- and 2.5-arcmin boxcar high-pass filters at 100 and 160 μm. Empirical measurements of the point spread function (PSF) are used to determine the encircled energy fraction as a function of aperture size. For the 100- and 160-μm bands, the effective PSFs are ~9 and ~13 arcsec (FWHM), and the 90-per cent encircled energy radii are 13 and 18 arcsec. Astrometric accuracy is good to ≤2 arcsec. The noise in the final maps is correlated between neighbouring pixels and rather higher than advertised prior to launch. For a pair of cross-scans, the 5σ point-source sensitivities are 125-165 mJy for 9-13 arcsec radius apertures at 100 μm and 150-240 mJy for 13-18 arcsec radius apertures at 160 μm. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

Herschel-ATLAS: Far-infrared properties of radio-selected galaxies

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 122-131

Authors:

MJ Hardcastle, JS Virdee, MJ Jarvis, DG Bonfield, L Dunne, S Rawlings, JA Stevens, NM Christopher, I Heywood, T Mauch, D Rigopoulou, A Verma, IK Baldry, SP Bamford, S Buttiglione, A Cava, DL Clements, A Cooray, SM Croom, A Dariush, G De Zotti, S Eales, J Fritz, DT Hill, D Hughes, R Hopwood, E Ibar, RJ Ivison, DH Jones, J Loveday, SJ Maddox, MJ Michałowski, M Negrello, P Norberg, M Pohlen, M Prescott, EE Rigby, ASG Robotham, G Rodighiero, D Scott, R Sharp, DJB Smith, P Temi, E Van Kampen

Abstract:

We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 74
  • Page 75
  • Page 76
  • Page 77
  • Current page 78
  • Page 79
  • Page 80
  • Page 81
  • Page 82
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet