Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift

Astronomy and Astrophysics 518:3 (2010)

Authors:

SJ Maddox, L Dunne, E Rigby, S Eales, A Cooray, D Scott, JA Peacock, M Negrello, DJB Smith, D Benford, A Amblard, R Auld, M Baes, D Bonfield, D Burgarella, S Buttiglione, A Cava, D Clements, A Dariush, G De Zotti, S Dye, D Frayer, J Fritz, J Gonzalez-Nuevo, D Herranz, E Ibar, R Ivison, MJ Jarvis, G Lagache, L Leeuw, M Lopez-Caniego, E Pascale, M Pohlen, G Rodighiero, S Samui, S Serjeant, P Temi, M Thompson, A Verma

Abstract:

We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 μm-selected sample we detect no significant clustering, consistent with the expectation that the 250 μm-selected sources are mostly normal galaxies at z < 1. For our 350 μm and 500 μm-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z∼2-3 we detect significant strong clustering, leading to an estimate of r0 ∼ 7-11 h-1 Mpc. The slope of our clustering measurements is very steep, δ ∼ 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies. © ESO, 2010.
More details from the publisher
More details
Details from ArXiV

An excess of star-forming galaxies in the fields of high-redshift QSOs

\mnras 405 (2010) 2623-2638-2623-2638

Authors:

JA Stevens, MJ Jarvis, KEK Coppin, MJ Page, TR Greve, FJ Carrera, RJ Ivison
More details from the publisher
Details from ArXiV

Photometric redshift estimation using Gaussian processes

\mnras 405 (2010) 987-994-987-994

Authors:

DG Bonfield, Y Sun, N Davey, MJ Jarvis, FB Abdalla, M Banerji, RG Adams
More details from the publisher
Details from ArXiV

The environments of z 1 active galactic nuclei at 3.6μm

\mnras 405 (2010) 347-358-347-358

Authors:

JT Falder, JA Stevens, MJ Jarvis, MJ Hardcastle, M Lacy, RJ McLure, E Hatziminaoglou, MJ Page, GT Richards
More details from the publisher
Details from ArXiV

A search for debris disks in the Herschel -ATLAS

Astronomy and Astrophysics 518:8 (2010)

Authors:

MA Thompson, DJB Smith, JA Stevens, MJ Jarvis, E Vidal Perez, J Marshall, L Dunne, S Eales, GJ White, L Leeuw, B Sibthorpe, M Baes, E González-Solares, D Scott, J Vieiria, A Amblard, R Auld, DG Bonfield, D Burgarella, S Buttiglione, A Cava, DL Clements, A Cooray, A Dariush, G De Zotti, S Dye, D Frayer, J Fritz, J Gonzalez-Nuevo, D Herranz, E Ibar, RJ Ivison, G Lagache, M Lopez-Caniego, S Maddox, M Negrello, E Pascale, M Pohlen, E Rigby, G Rodighiero, S Samui, S Serjeant, P Temi, I Valtchanov, A Verma

Abstract:

Aims. We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods. We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results. We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme. © 2010 ESO.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet