H-ATLAS: PACS imaging for the Science Demonstration Phase
Monthly Notices of the Royal Astronomical Society 409:1 (2010) 38-47
Abstract:
We describe the reduction of data taken with the PACS instrument on board the Herschel Space Observatory in the Science Demonstration Phase of the Herschel-ATLAS (H-ATLAS) survey, specifically data obtained for a 4 × 4 deg2 region using Herschel's fast-scan (60 arcsec s-1) parallel mode. We describe in detail a pipeline for data reduction using customized procedures within hipe from data retrieval to the production of science-quality images. We found that the standard procedure for removing cosmic ray glitches also removed parts of bright sources and so implemented an effective two-stage process to minimize these problems. The pronounced 1/f noise is removed from the timelines using 3.4- and 2.5-arcmin boxcar high-pass filters at 100 and 160 μm. Empirical measurements of the point spread function (PSF) are used to determine the encircled energy fraction as a function of aperture size. For the 100- and 160-μm bands, the effective PSFs are ~9 and ~13 arcsec (FWHM), and the 90-per cent encircled energy radii are 13 and 18 arcsec. Astrometric accuracy is good to ≤2 arcsec. The noise in the final maps is correlated between neighbouring pixels and rather higher than advertised prior to launch. For a pair of cross-scans, the 5σ point-source sensitivities are 125-165 mJy for 9-13 arcsec radius apertures at 100 μm and 150-240 mJy for 13-18 arcsec radius apertures at 160 μm. © 2010 The Authors. Journal compilation © 2010 RAS.Herschel-ATLAS: Far-infrared properties of radio-selected galaxies
Monthly Notices of the Royal Astronomical Society 409:1 (2010) 122-131
Abstract:
We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. © 2010 The Authors. Journal compilation © 2010 RAS.LOFAR and the low frequency universe. Probing the formation and evolution of massive galaxies, AGN and clusters
Proceedings of Science 112 (2010)
Abstract:
One of the most fundamental problems in modern astrophysics concerns the formation of galaxies and clusters of galaxies. The Dutch-European radio telescope LOFAR will open up the last unexplored window of the electromagnetic spectrum for astrophysical studies and make important contributions to our knowledge of the structure formation in the universe. LOFAR's world-class observational capabilities will be used to survey the entire Northern low-frequency sky at a number of key frequencies. Studies of the most distant radio galaxies, clusters of galaxies and the cosmic star formation history and the exploration of new parameter space for serendipitous discovery were the four key topics that drove the areas, depths and frequency coverage of the proposed surveys. In addition to the key topics, the LOFAR surveys will provide a wealth of unique data for a huge number of additional important topics, including: detailed studies of AGN, and AGN physics, AGN evolution and black hole accretion history, nearby galaxies, strong gravitational lenses, cosmological parameters and large-scale structure formation, and Galactic radio sources. In this contribution we will first briefly discuss the scientific topics that have driven the design of the surveys. Subsequently we will present the design of the surveys. We will then briefly report on commissioning work carried out to prepare the instrument and the software pipelines for carrying out these surveys. At the end we will elaborate on LOFAR studies on clusters and show some first LOFAR results related to the nearby rich cluster Abell 2256. With at the time of writing only 15 out of the planned 36 Dutch stations working and several aspects of the calibration pipleline not fully functional, the obtained 135 MHz image already is among the deepest ever produced at low frequencies. The central halo of A2256 is well detected, illustrating the potential of LOFAR to map diffuse steep spectrum radio emission.Probing ∼L Lyman-break galaxies at z≈ 7 in GOODS-South with WFC3 on Hubble Space Telescope
Monthly Notices of the Royal Astronomical Society 403:2 (2010) 938-944
Abstract:
We analyse recently acquired near-infrared Hubble Space Telescope imaging of the Great Observatories Origins Deep Survey (GOODS)-South field to search for star-forming galaxies at z≈ 7.0. By comparing Wide Field Camera 3 (WFC3) 0.98 μm Y-band images with Advanced Camera for Surveys (ACS)z-band (0.85 μm) images, we identify objects with colours consistent with Lyman-break galaxies at z≃ 6.4-7.4. This new data cover an area five times larger than that previously reported in the WFC3 imaging of the Hubble Ultra Deep Field and affords a valuable constraint on the bright end of the luminosity function. Using additional imaging of the region in the ACS B,V and i bands from GOODS v2.0 and the WFC. 3J band, we attempt to remove any low-redshift interlopers. Our selection criteria yields six candidates brighter than YAB= 27.0, of which all except one are detected in the ACS z-band imaging and are thus unlikely to be transients. Assuming all six candidates are atz≈ 7, this implies a surface density of objects brighter than YAB= 27.0 of 0.30 ± 0.12 arcmin-2, a value significantly smaller than the prediction from z≈ 6 luminosity function. This suggests continued evolution of the bright end of the luminosity function betweenz= 6 and 7, with number densities lower at higher redshift. © 2010 The Authors. Journal compilation © 2010 RAS.The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field
Monthly Notices of the Royal Astronomical Society 409:2 (2010) 855-866