Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Credit: Rendering by Dimitars Jevtics

Prof Michael Johnston

Professor of Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Terahertz photonics
  • Advanced Device Concepts for Next-Generation Photovoltaics
michael.johnston@physics.ox.ac.uk
Johnston Group Website
  • About
  • Publications

Optically Determined Hole Effective Mass in Tin-Iodide Perovskite Films

ACS Energy Letters American Chemical Society (ACS) (2025) 4589-4595

Authors:

Vincent J-Y Lim, Marcello Righetto, Michael D Farrar, Thomas Siday, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Tin-halide perovskites currently offer the best photovoltaic performance of lead-free metal-halide semiconductors. However, their transport properties are mostly dominated by holes, owing to ubiquitous self-doping. Here we demonstrate a noncontact, optical spectroscopic method to determine the effective mass of the dominant hole species in FASnI3, by investigating a series of thin films with hole densities finely tuned through either SnF2 additive concentration or controlled exposure to air. We accurately determine the plasma frequency from mid-infrared reflectance spectra by modeling changes in the vibrational response of the FA cation as the plasma edge shifts through the molecular resonance. Our approach yields a hole effective mass of 0.28m e for FASnI3 and demonstrates parabolicity within ∼100 meV of the valence band edge. An absence of Fano contributions further highlights insignificant coupling between the hole plasma and FA cation. Overall, this approach enables noncontact screening of thin-film materials for optimized charge-carrier transport properties.
More details from the publisher
More details
More details

Impact of Charge Transport Layers on the Structural and Optoelectronic Properties of Coevaporated Cu 2 AgBiI 6

ACS Applied Materials & Interfaces American Chemical Society 17:28 (2025) 40363-40374

Authors:

Jae Eun Lee, Marcello Righetto, Benjamin WJ Putland, Siyu Yan, Joshua RS Lilly, Snigdha Lal, Heon Jin, Nakita K Noel, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

The copper–silver–bismuth–iodide compound Cu2AgBiI6 has emerged as a promising lead-free and environmentally friendly alternative to wide-bandgap lead-halide perovskites for applications in multijunction solar cells. Despite its promising optoelectronic properties, the efficiency of Cu2AgBiI6 is still severely limited by poor charge collection. Here, we investigate the impact of commonly used charge transport layers (CTLs), including poly­[bis­(4-phenyl)­(2,4,6-trimethylphenyl)­amine] (PTAA), CuI, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and SnO2, on the structural and optoelectronic properties of coevaporated Cu2AgBiI6 thin films. We reveal that while organic transport layers, such as PTAA and PCBM, form a relatively benign interface, inorganic transport layers, such as CuI and SnO2, induce the formation of unintended impurity phases within the CuI–AgI–BiI3 solid solution space, significantly influencing structural and optoelectronic properties. We demonstrate that identification of these impurity phases requires careful cross-validation combining absorption, X-ray diffraction and THz photoconductivity spectroscopy because their structural and optoelectronic properties are very similar to those of Cu2AgBiI6. Our findings highlight the critical role of CTLs in determining the structural and optoelectronic properties of coevaporated copper–silver–bismuth–iodide thin films and underscore the need for advanced interface engineering to optimize device efficiency and reproducibility.
More details from the publisher
Details from ORA
More details
More details

Ruddlesden–Popper Defects Act as a Free Surface: Role in Formation and Photophysical Properties of CsPbI 3

Advanced Materials Wiley (2025) 2501788

Authors:

Weilun Li, Qimu Yuan, Yinan Chen, Joshua RS Lilly, Marina R Filip, Laura M Herz, Michael B Johnston, Joanne Etheridge

Abstract:

The perovskite semiconductor, CsPbI3, holds excellent promise for solar cell applications due to its suitable bandgap. However, achieving phase‐stable CsPbI3 solar cells with high power conversion efficiency remains a major challenge. Ruddlesden–Popper (RP) defects have been identified in a range of perovskite semiconductors, including CsPbI3. However, there is limited understanding as to why they form or their impact on stability and photophysical properties. Here, the prevalence of RP defects is increased with increased Cs‐excess in vapor‐deposited CsPbI3 thin films while superior structural stability but inferior photophysical properties are observed. Significantly, using electron microscopy, it is found that the atomic positions at the planar defect are comparable to those of a free surface, revealing their role in phase stabilization. Density functional theory (DFT) calculations reveal the RP planes are electronically benign, however, antisites observed at RP turning points are likely to be malign. Therefore it is proposed that increasing RP planes while reducing RP turning points offers a breakthrough for improving both phase stability and photophysical performance. The formation mechanism revealed here can apply more generally to RP structures in other perovskite systems.
More details from the publisher
Details from ORA
More details
More details

Aerosol-Assisted Crystallization Lowers Intrinsic Quantum Confinement and Improves Optoelectronic Performance in FAPbI<sub>3</sub> Films.

The journal of physical chemistry letters American Chemical Society (ACS) 16:9 (2025) 2212-2222

Authors:

Gurpreet Kaur, Madsar Hameed, Jae Eun Lee, Karim A Elmestekawy, Michael B Johnston, Joe Briscoe, Laura M Herz

Abstract:

FAPbI<sub>3</sub> has emerged as a promising semiconductor for photovoltaic applications offering a suitable bandgap for single-junction cells and high chemical stability. However, device efficiency is negatively affected by intrinsic quantum confinement (QC) effects that manifest as additional peaks in the absorption spectra. Here, we show that aerosol-assisted crystallization is an effective method to improve crystallinity and suppresses regions exhibiting QC in FAPbI<sub>3</sub>. We demonstrate that films with minimized QC effects exhibit markedly enhanced optoelectronic properties, such as higher charge-carrier mobilities and recombination lifetimes. Films crystallized under an aerosol solvent flow of either a mixture of <i>N</i>,<i>N</i>-dimethylformamide and dimethyl sulfoxide or methylammonium thiocyanate vapor displayed reduced charge-carrier recombination losses and improved diffusion lengths compared to those of thermally annealed control films. Our study indicates clear correlations between suppression of QC features in absorption spectra with optimization of crystallinity and mitigation of internal strain, highlighting pathways toward high-performance solar cells.
More details from the publisher
More details
More details

Resonance-Amplified Terahertz Near-Field Spectroscopy of a Single Nanowire

Nano Letters American Chemical Society 24:49 (2024) 15716-15723

Authors:

Sarah Norman, Greg Chu, Kun Peng, James Seddon, Lucy L Hale, Hark Hoe Tan, Chennupati Jagadish, Ralf Mouthaan, Jack Alexander-Webber, Hannah J Joyce, Michael B Johnston, Oleg Mitrofanov, Thomas Siday

Abstract:

Nanoscale material systems are central to next-generation optoelectronic and quantum technologies, yet their development remains hindered by limited characterization tools, particularly at terahertz (THz) frequencies. Far-field THz spectroscopy techniques lack the sensitivity for investigating individual nanoscale systems, whereas in near-field THz nanoscopy, surface states, disorder, and sample-tip interactions often mask the response of the entire nanoscale system. Here, we present a THz resonance-amplified near-field spectroscopy technique that can detect subtle conductivity changes in isolated nanoscale systemssuch as a single InAs nanowireunder ultrafast photoexcitation. By exploiting the spatial localization and resonant field enhancement in the gap of a bowtie antenna, our approach enables precise measurements of the nanostructures through shifts in the antenna resonant frequency, offering a direct means of extracting the system response, and unlocking investigations of ultrafast charge-carrier dynamics in isolated nanoscale and microscale systems.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet