In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites
Abstract:
Designing next-generation light-harvesting devices requires a detailed understanding of the transport of photoexcited charge carriers. The record-breaking efficiencies of metal halide perovskite solar cells have been linked to effective charge-carrier diffusion, yet the exact nature of charge-carrier out-of-plane transport remains notoriously difficult to explain. The characteristic spatial inhomogeneity of perovskite films with nanograins and crystallographic disorder calls for the simultaneous and hitherto elusive in situ resolution of the chemical composition, the structural phase and the ultrafast dynamics of the local out-of-plane transport. Here we simultaneously probe the intrinsic out-of-plane charge-carrier diffusion and the nanoscale morphology by pushing depth-sensitive terahertz near-field nanospectroscopy to extreme subcycle timescales. In films of the organic–inorganic metal halide perovskite FA0.83Cs0.17Pb(I1−xClx)3 (where FA is formamidinium), domains of the cubic α-phase are clearly distinguished from the trigonal δ-phase and PbI2 nano-islands. By analysing deep-subcycle time shifts of the scattered terahertz waveform after photoexcitation, we access the vertical charge-carrier dynamics within single grains. At all of the measured locations, despite topographic irregularities, diffusion is surprisingly homogeneous on the 100 nm scale, although it varies between mesoscopic regions. Linking in situ carrier transport with nanoscale morphology and chemical composition could introduce a paradigm shift for the analysis and optimization of next-generation optoelectronics that are based on nanocrystalline materials.
Near-field probes for sensitive detectorless near-field nanoscopy in the 2.0–4.6 THz range
Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss
Abstract:
The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.
Unraveling loss mechanisms arising from energy-level misalignment between metal halide perovskites and hole transport layers
Abstract:
Metal halide perovskites are promising light absorbers for multijunction photovoltaic applications because of their remarkable bandgap tunability, achieved through compositional mixing on the halide site. However, poor energy-level alignment at the interface between wide-bandgap mixed-halide perovskites and charge-extraction layers still causes significant losses in solar-cell performance. Here, the origin of such losses is investigated, focusing on the energy-level misalignment between the valence band maximum and the highest occupied molecular orbital (HOMO) for a commonly employed combination, FA0.83Cs0.17Pb(I1-xBrx)3 with bromide content x ranging from 0 to 1, and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). A combination of time-resolved photoluminescence spectroscopy and numerical modeling of charge-carrier dynamics reveals that open-circuit voltage (VOC) losses associated with a rising energy-level misalignment derive from increasing accumulation of holes in the HOMO of PTAA, which then subsequently recombine non-radiatively across the interface via interfacial defects. Simulations assuming an ideal choice of hole-transport material to pair with FA0.83Cs0.17Pb(I1-xBrx)3 show that such VOC losses originating from energy-level misalignment can be reduced by up to 70 mV. These findings highlight the urgent need for tailored charge-extraction materials exhibiting improved energy-level alignment with wide-bandgap mixed-halide perovskites to enable solar cells with improved power conversion efficiencies.