Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Credit: Rendering by Dimitars Jevtics

Prof Michael Johnston

Professor of Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Terahertz photonics
  • Advanced Device Concepts for Next-Generation Photovoltaics
michael.johnston@physics.ox.ac.uk
Johnston Group Website
  • About
  • Publications

Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite

Journal of Physical Chemistry Letters American Chemical Society 12:13 (2021) 3352-3360

Authors:

Adam Wright, Leonardo RV Buizza, Kimberley Savill, Giulia Longo, Henry Snaith, Michael Johnston, Laura Herz

Abstract:

Cs2AgBiBr6 is a promising metal halide double perovskite offering the possibility of efficient photovoltaic devices based on lead-free materials. Here, we report on the evolution of photoexcited charge carriers in Cs2AgBiBr6 using a combination of temperature-dependent photoluminescence, absorption and optical pump–terahertz probe spectroscopy. We observe rapid decays in terahertz photoconductivity transients that reveal an ultrafast, barrier-free localization of free carriers on the time scale of 1.0 ps to an intrinsic small polaronic state. While the initially photogenerated delocalized charge carriers show bandlike transport, the self-trapped, small polaronic state exhibits temperature-activated mobilities, allowing the mobilities of both to still exceed 1 cm2 V–1 s–1 at room temperature. Self-trapped charge carriers subsequently diffuse to color centers, causing broad emission that is strongly red-shifted from a direct band edge whose band gap and associated exciton binding energy shrink with increasing temperature in a correlated manner. Overall, our observations suggest that strong electron–phonon coupling in this material induces rapid charge-carrier localization.
More details from the publisher
Details from ORA
More details
More details

Unveiling the ultrafast optoelectronic properties of 3D Dirac semi-metal Cd3As2

Proceedings of the 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2020) IEEE (2021)

Authors:

Jessica L Boland, Chelsea Q Xia, Djamshid A Damry, Piet Schoenherr, Laura M Herz, Thorsten Hesjedal, Michael B Johnston

Abstract:

We employ ultrafast optical-pump terahertz-probe spectroscopy and ultrafast THz emission spectroscopy to investigate the ultrafast charge carrier dynamics in the 3D Dirac semi-metal CdAs. We extract the temperature-dependent electron mobility (16,000cmVs at 5K) for CdAs nanowire ensemble. We also demonstrate strong THz emission from both CdAs single crystal and nanowires, whose polarity depends strongly on incident angle and pump polarisation.
More details from the publisher
Details from ORA
More details
More details

Crystallization of CsPbBr3 single crystals in water for X-ray detection

Nature Communications Springer Nature 12:1 (2021) 1531

Authors:

Jiali Peng, Chelsea Q Xia, Yalun Xu, Ruiming Li, Lihao Cui, Jack K Clegg, Laura M Herz, Michael B Johnston, Qianqian Lin
More details from the publisher
More details
More details

Heterogeneous integration of semiconductor nanowires in 2D and 3D nanophotonic systems

SPIE, the international society for optics and photonics (2021) 31

Authors:

Dimitars Jevtics, Matej Hejda, Kun Peng, Benoit Guilhabert, Joshua Robertson, John McPhillimy, Hoe Tan, Chennupati Jagadish, Michael B Johnston, Michael Strain, Martin Dawson, Antonio Hurtado
More details from the publisher

Halide segregation in mixed-halide perovskites: influence of A-site cations

ACS Energy Letters American Chemical Society 6:2 (2021) 799-808

Authors:

Alexander Knight, Anna Juliane Borchert, Robert DJ Oliver, Jay Patel, Paolo G Radaelli, Henry Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed-halide perovskites offer bandgap tunability essential for multijunction solar cells; however, a detrimental halide segregation under light is often observed. Here we combine simultaneous in situ photoluminescence and X-ray diffraction measurements to demonstrate clear differences in compositional and optoelectronic changes associated with halide segregation in MAPb(Br0.5I0.5)3 and FA0.83Cs0.17Pb(Br0.4I0.6)3 films. We report evidence for low-barrier ionic pathways in MAPb(Br0.5I0.5)3, which allow for the rearrangement of halide ions in localized volumes of perovskite without significant compositional changes to the bulk material. In contrast, FA0.83Cs0.17Pb(Br0.4I0.6)3 lacks such low-barrier ionic pathways and is, consequently, more stable against halide segregation. However, under prolonged illumination, it exhibits a considerable ionic rearrangement throughout the bulk material, which may be triggered by an initial demixing of A-site cations, altering the composition of the bulk perovskite and reducing its stability against halide segregation. Our work elucidates links between composition, ionic pathways, and halide segregation, and it facilitates the future engineering of phase-stable mixed-halide perovskites.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet