Single GaAs/AlGaAs nanowire photoconductive terahertz detectors
2014 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2014 (2014) 221-222
Abstract:
Photoconductive terahertz detectors based on single GaAs/AlGaAs core-shell nanowire have been designed and fabricated. The devices were characterised in a terahertz time-domain spectroscopy system, showing excellent sensitivity comparable to the standard bulk ion-implanted InP receiver, with a detection bandwidth of 0.1 ∼ 0.6 THz. Finite-difference time-domain simulations were performed to understand the origin of the narrow bandwidth of current detectors as well as optimize antenna designs to improve detector performance.Dependence of dye regeneration and charge collection on the pore-filling fraction in solid-state dye-sensitized solar cells
Advanced Functional Materials 24:5 (2014) 668-677
Abstract:
Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO 2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2′,7,7′-tetrakis(N,N-di-p- methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of ≈30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO2 porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction. Solid-state dye-sensitized solar cells capable of complete hole transfer with pore-filling fractions as low as ∼30% are demonstrated. Improvements of device efficiencies beyond ∼30% are explained by a stepwise increase in charge-collection efficiency in agreement with percolation theory. Furthermore, it is predicted that, for a 20 nm pore size, the photocurrent reaches a maximum at ∼83% pore-filling fraction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.An ultrafast carbon nanotube terahertz polarisation modulator
Journal of Applied Physics American Institute of Physics 115:20 (2014) 203108-203108
Abstract:
We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.Chapter 10: Pump-probe spectroscopy at terahertz frequencies
Springer Series in Optical Sciences 171 (2013) 251-271
Abstract:
Optical-pump-terahertz-probe spectroscopy is a technique that can measure directly the conductivity of photoexcited carriers on a picosecond timescale. In this chapter, we introduce the technique and data analysis, and discuss suitable models of the interaction between terahertz radiation and quasiparticles in materials. We then review some recent studies of inorganic and organic semiconductors and nanomaterials. © Springer-Verlag Berlin Heidelberg 2013.Fast electron trapping in anodized TiO2 nanotubes
International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz (2013)