Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer.
Nano Lett 12:12 (2012) 6293-6301
Abstract:
The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.Extreme sensitivity of graphene photoconductivity to environmental gases
(2012)
Environment induced variation in the photoconductivity of graphene observed by terahertz spectroscopy
International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz (2012)
Abstract:
Chemical vapour deposition (CVD) grown graphene sheets were investigated using optical-pump terahertz-probe spectroscopy, revealing a dramatic variation in the photoinduced terahertz conductivity of graphene in different atmospheres. © 2012 IEEE.Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers
Semiconductor Science and Technology 27:11 (2012)
Abstract:
A semi-classical Monte Carlo simulation of carrier dynamics in photoconductive detectors of terahertz (THz) radiation is presented. We have used this simulation to elucidate the importance of carrier trapping in the operation of photoconductive detectors. Simulations of the detection of single-cycle THz pulses by photoconductive antennas based on GaAs with trap densities between 2 × 10 17 and 2 × 10 18 cm 3 are presented. We show that the high frequency (>1 THz) spectral response of photoconductive devices decreases with increasing excitation fluence. Our simulations reveal that this effect is a direct consequence of the saturation of trapping centres © 2012 IOP Publishing Ltd.The origin of an efficiency improving "light soaking" effect in SnO 2 based solid-state dye-sensitized solar cells
Energy and Environmental Science 5:11 (2012) 9566-9573