Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relative vorticity in SpeedyWeather, painted like clouds.

Milan Kloewer (he|him)

NERC Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate processes
milan.kloewer@physics.ox.ac.uk
personal website
github
  • About
  • Publications

Neural General Circulation Models for Weather and Climate

(2023)

Authors:

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan Klöwer, James Lottes, Stephan Rasp, Peter Düben, Sam Hatfield, Peter Battaglia, Alvaro Sanchez-Gonzalez, Matthew Willson, Michael P Brenner, Stephan Hoyer
More details from the publisher
Details from ArXiV

An analysis of ways to decarbonize conference travel after COVID-19

Nature Nature Research 583 (2020) 356-360

Authors:

Milan Klower, Deborah Hopkins, Myles Allen, James Higham
More details from the publisher
Details from ORA
More details
More details
More details

Fluid simulations accelerated with 16 bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16

Journal of Advances in Modelling Earth Systems Wiley 14:2 (2022) e2021MS002684

Authors:

Milan Kloewer, Sam Hatfield, Matteo Croci, Peter D Düben, Tim N Palmer

Abstract:

Most Earth-system simulations run on conventional central processing units in 64-bit double precision floating-point numbers Float64, although the need for high-precision calculations in the presence of large uncertainties has been questioned. Fugaku, currently the world's fastest supercomputer, is based on A64FX microprocessors, which also support the 16-bit low-precision format Float16. We investigate the Float16 performance on A64FX with ShallowWaters.jl, the first fluid circulation model that runs entirely with 16-bit arithmetic. The model implements techniques that address precision and dynamic range issues in 16 bits. The precision-critical time integration is augmented to include compensated summation to minimize rounding errors. Such a compensated time integration is as precise but faster than mixed precision with 16 and 32-bit floats. As subnormals are inefficiently supported on A64FX the very limited range available in Float16 is 6 × 10−5 to 65,504. We develop the analysis-number format Sherlogs.jl to log the arithmetic results during the simulation. The equations in ShallowWaters.jl are then systematically rescaled to fit into Float16, using 97% of the available representable numbers. Consequently, we benchmark speedups of up to 3.8x on A64FX with Float16. Adding a compensated time integration, speedups reach up to 3.6x. Although ShallowWaters.jl is simplified compared to large Earth-system models, it shares essential algorithms and therefore shows that 16-bit calculations are indeed a competitive way to accelerate Earth-system simulations on available hardware.
More details from the publisher
Details from ORA
More details
More details

Quantifying aviation’s contribution to global warming

Environmental Research Letters IOP Publishing 16:10 (2021) 104027-104027

Authors:

M Klöwer, MR Allen, DS Lee, SR Proud, L Gallagher, A Skowron

Abstract:

Abstract Growth in aviation contributes more to global warming than is generally appreciated because of the mix of climate pollutants it generates. Here, we model the CO2 and non-CO2 effects like nitrogen oxide emissions and contrail formation to analyse aviation’s total warming footprint. Aviation contributed approximately 4% to observed human-induced global warming to date, despite being responsible for only 2.4% of global annual emissions of CO2. Aviation is projected to cause a total of about 0.1 °C of warming by 2050, half of it to date and the other half over the next three decades, should aviation’s pre-COVID growth resume. The industry would then contribute a 6%–17% share to the remaining 0.3 °C–0.8 °C to not exceed 1.5 °C–2 °C of global warming. Under this scenario, the reduction due to COVID-19 to date is small and is projected to only delay aviation’s warming contribution by about five years. But the leveraging impact of growth also represents an opportunity: aviation’s contribution to further warming would be immediately halted by either a sustained annual 2.5% decrease in air traffic under the existing fuel mix, or a transition to a 90% carbon-neutral fuel mix by 2050.
More details from the publisher
More details
More details

ClimateBenchPress: A Benchmark for Compression of Climate Data

Copernicus Publications (2025)

Authors:

Tim Reichelt, Juniper Tyree, Milan Kloewer, Peter Dueben, Bryan Lawrence, Dorit Hammerling, Alisson Baker, Sara Faghih-Naini, Philip Stier
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet