Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relative vorticity in SpeedyWeather, painted like clouds.

Milan Kloewer (he|him)

NERC Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate processes
milan.kloewer@physics.ox.ac.uk
personal website
github
  • About
  • Publications

Earth Virtualization Engines: A Technical Perspective

Computing in Science & Engineering Institute of Electrical and Electronics Engineers (IEEE) 25:3 (2023) 50-59

Authors:

Torsten Hoefler, Bjorn Stevens, Andreas F Prein, Johanna Baehr, Thomas Schulthess, Thomas F Stocker, John Taylor, Daniel Klocke, Pekka Manninen, Piers M Forster, Tobias Kölling, Nicolas Gruber, Hartwig Anzt, Claudia Frauen, Florian Ziemen, Milan Klöwer, Karthik Kashinath, Christoph Schär, Oliver Fuhrer, Bryan N Lawrence
More details from the publisher

Productivity meets Performance: Julia on A64FX

ArXiv 2207.12762 (2022)

Authors:

Mosè Giordano, Milan Klöwer, Valentin Churavy
Details from ArXiV

Climate Modeling in Low Precision: Effects of Both Deterministic and Stochastic Rounding

Journal of Climate American Meteorological Society 35:4 (2022) 1215-1229

Authors:

E Adam Paxton, Matthew Chantry, Milan Klöwer, Leo Saffin, Tim Palmer
More details from the publisher
More details

Fluid simulations accelerated with 16 bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16

Journal of Advances in Modelling Earth Systems Wiley 14:2 (2022) e2021MS002684

Authors:

Milan Kloewer, Sam Hatfield, Matteo Croci, Peter D Düben, Tim N Palmer

Abstract:

Most Earth-system simulations run on conventional central processing units in 64-bit double precision floating-point numbers Float64, although the need for high-precision calculations in the presence of large uncertainties has been questioned. Fugaku, currently the world's fastest supercomputer, is based on A64FX microprocessors, which also support the 16-bit low-precision format Float16. We investigate the Float16 performance on A64FX with ShallowWaters.jl, the first fluid circulation model that runs entirely with 16-bit arithmetic. The model implements techniques that address precision and dynamic range issues in 16 bits. The precision-critical time integration is augmented to include compensated summation to minimize rounding errors. Such a compensated time integration is as precise but faster than mixed precision with 16 and 32-bit floats. As subnormals are inefficiently supported on A64FX the very limited range available in Float16 is 6 × 10−5 to 65,504. We develop the analysis-number format Sherlogs.jl to log the arithmetic results during the simulation. The equations in ShallowWaters.jl are then systematically rescaled to fit into Float16, using 97% of the available representable numbers. Consequently, we benchmark speedups of up to 3.8x on A64FX with Float16. Adding a compensated time integration, speedups reach up to 3.6x. Although ShallowWaters.jl is simplified compared to large Earth-system models, it shares essential algorithms and therefore shows that 16-bit calculations are indeed a competitive way to accelerate Earth-system simulations on available hardware.
More details from the publisher
Details from ORA
More details
More details

Productivity meets Performance: Julia on A64FX

Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 549-555

Authors:

Mosè Giordano, Milan Klöwer, Valentin Churavy
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet