Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relative vorticity in SpeedyWeather, painted like clouds.

Milan Kloewer (he|him)

NERC Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate processes
milan.kloewer@physics.ox.ac.uk
personal website
github
  • About
  • Publications

Apparent temperature and heat‐related illnesses during international athletic championships: A prospective cohort study

Scandinavian Journal of Medicine and Science in Sports Wiley 31:11 (2021) 2092-2102

Authors:

Karsten Hollander, Milan Klöwer, Andy Richardson, Laurent Navarro, Sébastien Racinais, Volker Scheer, Andrew Murray, Pedro Branco, Toomas Timpka, Astrid Junge, Pascal Edouard
More details from the publisher
More details
More details

Compressing atmospheric data into its real information content

Nature Computational Science Springer Nature 1:11 (2021) 713-724

Authors:

Milan Klöwer, Miha Razinger, Juan J Dominguez, Peter D Düben, Tim N Palmer
More details from the publisher
More details
More details

Quantifying aviation’s contribution to global warming

Environmental Research Letters IOP Publishing 16:10 (2021) 104027-104027

Authors:

M Klöwer, MR Allen, DS Lee, SR Proud, L Gallagher, A Skowron

Abstract:

Abstract Growth in aviation contributes more to global warming than is generally appreciated because of the mix of climate pollutants it generates. Here, we model the CO2 and non-CO2 effects like nitrogen oxide emissions and contrail formation to analyse aviation’s total warming footprint. Aviation contributed approximately 4% to observed human-induced global warming to date, despite being responsible for only 2.4% of global annual emissions of CO2. Aviation is projected to cause a total of about 0.1 °C of warming by 2050, half of it to date and the other half over the next three decades, should aviation’s pre-COVID growth resume. The industry would then contribute a 6%–17% share to the remaining 0.3 °C–0.8 °C to not exceed 1.5 °C–2 °C of global warming. Under this scenario, the reduction due to COVID-19 to date is small and is projected to only delay aviation’s warming contribution by about five years. But the leveraging impact of growth also represents an opportunity: aviation’s contribution to further warming would be immediately halted by either a sustained annual 2.5% decrease in air traffic under the existing fuel mix, or a transition to a 90% carbon-neutral fuel mix by 2050.
More details from the publisher
More details
More details

Climate Modelling in Low-Precision: Effects of both Deterministic & Stochastic Rounding

ArXiv 2104.15076 (2021)

Authors:

E Adam Paxton, Matthew Chantry, Milan Klöwer, Leo Saffin, Tim Palmer
Details from ArXiV

Number formats, error mitigation, and scope for 16‐bit arithmetics in weather and climate modeling analyzed with a shallow water model

Journal of Advances in Modeling Earth Systems American Geophysical Union 12:10 (2020) e2020MS002246

Authors:

Pd Düben, Tn Palmer

Abstract:

The need for high‐precision calculations with 64‐bit or 32‐bit floating‐point arithmetic for weather and climate models is questioned. Lower‐precision numbers can accelerate simulations and are increasingly supported by modern computing hardware. This paper investigates the potential of 16‐bit arithmetic when applied within a shallow water model that serves as a medium complexity weather or climate application. There are several 16‐bit number formats that can potentially be used (IEEE half precision, BFloat16, posits, integer, and fixed‐point). It is evident that a simple change to 16‐bit arithmetic will not be possible for complex weather and climate applications as it will degrade model results by intolerable rounding errors that cause a stalling of model dynamics or model instabilities. However, if the posit number format is used as an alternative to the standard floating‐point numbers, the model degradation can be significantly reduced. Furthermore, mitigation methods, such as rescaling, reordering, and mixed precision, are available to make model simulations resilient against a precision reduction. If mitigation methods are applied, 16‐bit floating‐point arithmetic can be used successfully within the shallow water model. The results show the potential of 16‐bit formats for at least parts of complex weather and climate models where rounding errors would be entirely masked by initial condition, model, or discretization error.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet