Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Bence Kocsis

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
bence.kocsis@physics.ox.ac.uk
Telephone: 01865 273959
Rudolf Peierls Centre for Theoretical Physics, room 50.08
  • About
  • Publications

Resonant relaxation and the warp of the stellar disc in the Galactic centre

(2010)

Authors:

Bence Kocsis, Scott Tremaine
More details from the publisher

Gas driven massive black hole binaries: signatures in the nHz gravitational wave background

(2010)

Authors:

Bence Kocsis, Alberto Sesana
More details from the publisher

The population of viscosity- and gravitational wave-driven supermassive black hole binaries among luminous active galactic nuclei

Astrophysical Journal American Astronomical Society 700:2 (2009) 1952-1969

Authors:

Zoltan Haiman, Bence Kocsis, Kristen Menou

Abstract:

Supermassive black hole binaries (SMBHBs) in galactic nuclei are thought to be a common by-product of major galaxy mergers. We use simple disk models for the circumbinary gas and for the binary–disk interaction to follow the orbital decay of SMBHBs with a range of total masses (M) and mass ratios (q), through physically distinct regions of the disk, until gravitational waves (GWs) take over their evolution. Prior to the GW-driven phase, the viscous decay is generically in the stalled "secondary-dominated" regime. SMBHBs spend a non-negligible fraction of a fiducial time of 107 yr at orbital periods between days ≲torb≲ yr, and we argue that they may be sufficiently common to be detectable, provided they are luminous during these stages. A dedicated optical or X-ray survey could identify coalescing SMBHBs statistically, as a population of periodically variable quasars, whose abundance obeys the scaling Nvar ∝ tαvar within a range of periods around tvar∼ tens of weeks. SMBHBs with M ≲ 107 M☉, with 0.5 ≲ α ≲ 1.5, would probe the physics of viscous orbital decay, whereas the detection of a population of higher-mass binaries, with α = 8/3, would confirm that their decay is driven by GWs. The lowest-mass SMBHBs (M ≲ 105–6 M☉) enter the GW-driven regime at short orbital periods, when they are already in the frequency band of the Laser Interferometric Space Antenna (LISA). While viscous processes are negligible in the last few years of coalescence, they could reduce the amplitude of any unresolved background due to near-stationary LISA sources. We discuss modest constraints on the SMBHB population already available from existing data, and the sensitivity and sky coverage requirements for a detection in future surveys. SMBHBs may also be identified from velocity shifts in their spectra; we discuss the expected abundance of SMBHBs as a function of their orbital velocity.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Gravitational waves from scattering of stellar-mass black holes in galactic nuclei

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 395:4 (2009) 2127-2146

Authors:

Ryan M O'Leary, Bence Kocsis, Abraham Loeb
More details from the publisher
More details
Details from ArXiV

Challenges facing young astrophysicists

(2009)

Authors:

NL Zakamska, AE Schulz, K Heng, M Juric, B Kocsis, M Kuhlen, R Mandelbaum, JL Mitchell, M Pan, DH Rudd, G van de Ven, Z Zheng
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • Current page 40
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet