Resonant locking between binary systems induced by gravitational waves
Physical Review D American Physical Society (APS) 113:2 (2026) 023040
Abstract:
The interaction of gravitational waves (GWs) with matter is thought to be typically negligible in the Universe. We identify an exception in the case of resonant interactions, where GWs emitted by a background binary system, such as an inspiraling supermassive black hole (SMBH) binary, cause a resonant response in a stellar-mass foreground binary and the frequencies of the two systems become, and remain, synchronized. We point out that this previously unexplored dynamical phenomenon is not only possible, but can lead to binary systems becoming resonantly locked in the host galaxy of merging SMBHs of mass , each of which has a significantly reduced merger time. We predict binary systems have been locked in the Universe’s history. Resonant locking could be detected through anomalous inspiral of binary systems.Angular-momentum pairs in spherical systems: applications to the Galactic centre
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag039
Abstract:
Abstract Consider a system of point masses in a spherical potential. In such systems objects execute planar orbits covering two-dimensional rings or annuli, represented by the angular-momentum vectors, which slowly reorient due to the persistent weak gravitational interaction between different rings. This process, called vector resonant relaxation, is much faster than other processes which change the size/shape of the rings. The interaction is strongest between objects with closely aligned angular-momentum vectors. In this paper, we show that nearly parallel angular-momentum vectors may form stable bound pairs in angular-momentum space. We examine the stability of such pairs against an external massive perturber, and determine the critical separation analogous to the Hill radius or tidal radius in the three-body problem, where the angular-momentum pairs are marginally disrupted, as a function of the perturber’s mass, the orbital inclination, and the radial distance. Angular-momentum pairs or multiples closer than the critical inclination will remain bound and evolve together in angular-momentum-direction space under any external influence, such as anisotropic density fluctuations, or massive perturbers. This study has applications in various astrophysical contexts, including galactic nuclei, in particular the Milky Way’s Galactic centre, globular clusters, or planetary systems. In nuclear star clusters with a central super-massive black hole, we apply this criterion to the disc of young, massive stars, and show that clusters in angular-momentum space may be used to constrain the presence of intermediate-mass black holes or the mass of the nearby gaseous torus.Black hole merger rates in AGN: contribution from gas-captured binaries
Monthly Notices of the Royal Astronomical Society Oxford University Press 544:4 (2025) 4576-4589
Abstract:
Merging black hole (BH) binaries in active galactic nucleus (AGN) discs formed through two-body scatterings via the ‘gas-capture’ process may explain a significant fraction of BH mergers in AGN and a non-negligible contribution to the observed rate from LIGO-VIRGO-KAGRA. We perform Monte Carlo simulations of binary BH formation, evolution, and mergers across the observed AGN mass function using a novel physically motivated treatment for the gas-capture process derived from hydrodynamical simulations of BH–BH encounters in AGN. Our models suggest that gas-captured binaries could result in merger rates of Gpc yr. Mergers from AGN are dominated by AGN with supermassive BH masses of , with 90 per cent of mergers occurring in the range . The merging mass distribution is flatter than the initial BH mass power law by a factor , as larger BHs align with the disc and form binaries more efficiently. Similarly, the merging mass ratio distribution is flatter therefore the AGN channel could explain high mass and unequal mass ratio detections such as GW190521 and GW190814. Using a simpler dynamical friction treatment for the binary formation process, the results are similar, where the primary bottleneck is the alignment time with the disc. The most influential parameters are the anticipated number of BHs and their mass function. Given the many uncertainties that remain in the AGN channel, we expect the true uncertainty extends beyond our predicted rates. None the less, we conclude that AGN remain an important channel for consideration, particularly for gravitational wave detections involving one or two high mass BHs.Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:4 (2025) 3768-3782
Abstract:
We investigate the evolution of black holes on orbits with small inclinations () to the gaseous discs of active galactic nuclei (AGNs). We perform 3D adiabatic hydrodynamic simulations within a shearing frame, studying the damping of inclination by black hole-gas gravitation. We find that for objects with , where is the disc aspect ratio, the inclination lost per mid-plane crossing is proportional to the inclination preceding the crossing, resulting in a net exponential decay in inclination. For objects with , damping efficiency decreases for higher inclinations. We consider a variety of different AGN environments, finding that damping is stronger for systems with a higher ambient Hill mass: the initial gas mass within the BH sphere of influence. We provide a fitting formula for the inclination changes as a function of Hill mass. We find reasonable agreement between the damping driven by gas gravity in the simulations and the damping driven by accretion under a Hill-limited Bondi–Hoyle–Lyttleton prescription. We find that gas dynamical friction consistently overestimates the strength of damping, especially for lower inclination systems, by at least an order of magnitude. For regions in the AGN disc where coplanar binary black hole formation by gas dissipation is efficient, we find that the simulated damping time-scales are especially short with . We conclude that as the time-scales for inclination damping are shorter than the expected interaction time between isolated black holes, the vast majority of binaries formed from gas capture should form from components with negligible inclination to the AGN disc.Hydrodynamic simulations of black hole evolution in AGN discs – I. Orbital alignment of highly inclined satellites
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 132-145