Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Thaddeus Komacek

Associate Professor of Physics of Exoplanet Atmospheres

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
tad.komacek@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 209D
  • About
  • Teaching
  • Research
  • Publications

Escaping Helium and a Highly Muted Spectrum Suggest a Metal-Enriched Atmosphere on Sub-Neptune GJ3090b from JWST Transit Spectroscopy

(2025)

Authors:

Eva-Maria Ahrer, Michael Radica, Caroline Piaulet-Ghorayeb, Eshan Raul, Lindsey S Wiser, Luis Welbanks, Lorena Acuna, Romain Allart, Louis-Philippe Coulombe, Amy J Louca, Ryan J MacDonald, Morgan Saidel, Thomas M Evans-Soma, Björn Benneke, Duncan Christie, Thomas G Beatty, Charles Cadieux, Ryan Cloutier, René Doyon, Jonathan J Fortney, Anna Gagnebin, Cyril Gapp, Hamish Innes, Heather A Knutson, Thaddeus D Komacek, Joshua E Krissansen-Totton, Yamila Miguel, Raymond T Pierrehumbert, Pierre-Alexis Roy, Hilke E Schlichting
More details from the publisher

Limited Hysteresis in the Atmospheric Dynamics of Hot Jupiters

The Astrophysical Journal American Astronomical Society 983:1 (2025) 7

Abstract:

Over the past two decades, a coherent picture has emerged of the atmospheric dynamics of hot Jupiters from a combination of three-dimensional general circulation models and astronomical observations. This paradigm consists of hot Jupiters being spin-synchronized due to their close-in orbit, with a resulting large day-to-night irradiation gradient driving a day-to-night temperature contrast. This day-to-night temperature contrast in turn raises day-to-night pressure gradients that are balanced by a circulation with wind speeds on the order of km s−1. The dominant feature of this circulation is a super-rotating equatorial jet, maintained by eddy-mean flow interactions that pump momentum into the jet. In this work, I explore the dependence of this circulation paradigm on the initial thermal and dynamical conditions in atmospheric circulation models of hot Jupiters. To do so, I conduct MITgcm simulations of the atmospheric circulation of hot Jupiters with both varying initial wind directions and initial temperature profiles. I find that the results are insensitive to the initial conditions, implying that the current paradigm of hot-Jupiter circulation exhibits at most limited hysteresis. I demonstrate that there is a single characteristic wind speed of hot Jupiters for given planetary and atmospheric parameters using an idealized scaling theory, and discuss implications for the interpretation of hot Jupiter observations.
More details from the publisher
Details from ORA
More details

The climates and thermal emission spectra of prime nearby temperate rocky exoplanet targets

(2025)

Authors:

Tobi Hammond, Thaddeus D Komacek, Ravi K Kopparapu, Thomas J Fauchez, Avi M Mandell, Eric T Wolf, Vincent Kofman, Stephen R Kane, Ted M Johnson, Anmol Desai, Giada Arney, Jaime S Crouse
Details from ArXiV

Thermal Phase Curves in Hot Gas Giant Exoplanets Exhibit a Complex Dependence on Planetary Properties

The Astrophysical Journal American Astronomical Society 982:2 (2025) 159

Authors:

Mark R Swain, Kyle A Pearson, Thaddeus D Komacek, Geoffrey Bryden, Emeline Fromont, Gautam Vasisht, Gael Roudier, Robert T Zellem
More details from the publisher
More details

Testing the standard model of hot Jupiter atmospheric circulation

Copernicus Publications (2025)
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet