Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Hans Kraus

Professor of Physics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Particle Physics

Research groups

  • LUX-ZEPLIN
Hans.Kraus@physics.ox.ac.uk
Telephone: 01865 (2)73361
Denys Wilkinson Building, room 623
  • About
  • Publications

Constraints on self-interaction cross-sections of dark matter in universal bound states from direct detection

The European Physical Journal C SpringerOpen 84:11 (2024) 1170

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, E Cipelli, L Canonica, A D’Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, H Kraus

Abstract:

Λ-Cold Dark Matter (ΛCDM) has been successful at explaining the large-scale structures in the universe but faces severe issues on smaller scales when compared to observations. Introducing self-interactions between dark matter particles claims to provide a solution to the small-scale issues in the ΛCDM simulations while being consistent with the observations at large scales. The existence of the energy region in which these self-interactions between dark matter particles come close to saturating the S-wave unitarity bound can result in the formation of dark matter bound states called darkonium. In this scenario, all the low energy scattering properties are determined by a single parameter, the inverse scattering length γ. In this work, we set bounds on γ by studying the impact of darkonium on the observations at direct detection experiments using data from CRESST-III and XENON1T. The exclusion limits on γ are then subsequently converted to exclusion limits on the self-interaction cross-section and compared with the constraints from astrophysics and N-body simulations.
More details from the publisher
Details from ORA
More details

High-dimensional Bayesian likelihood normalisation for CRESST's background model

Journal of Instrumentation IOP Publishing 19:11 (2024) p11013

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D'Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, S Kuckuk, A Langenkämper, M Mancuso, L Marini, L Meyer, V Mokina, A Nilima, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, D Schmiedmayer, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, M Willers, V Zema, F Ferella, M Laubenstein, S Nisi, The CRESST collaboration
More details from the publisher
More details

The data acquisition system of the LZ dark matter detector: FADR

Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment Elsevier 1068 (2024) 169712

Authors:

J Aalbers, DS Akerib, AK Al Musalhi, F Alder, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, A Baker, S Balashov, J Bang, EE Barillier, JW Bargemann, K Beattie, T Benson, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, E Bishop, GM Blockinger, B Boxer, CAJ Brew, P Brás, JH Buckley, S Burdin, M Buuck, MC Carmona-Benitez, M Carter, A Chawla, H Chen, JJ Cherwinka, YT Chin, NI Chott, MV Converse, A Cottle, G Cox, D Curran, CE Dahl, A David, J Delgaudio, S Dey, L de Viveiros, L Di Felice, T Dimino, C Ding, JEY Dobson, E Druszkiewicz, SR Eriksen, A Fan, NM Fearon, N Fieldhouse, S Fiorucci, H Flaecher, ED Fraser, TMA Fruth, RJ Gaitskell, A Geffre, R Gelfand, J Genovesi, C Ghag, R Gibbons, S Gokhale, J Green, MGD van der Grinten, JJ Haiston, CR Hall, S Han, E Hartigan-O’Connor, SJ Haselschwardt, MA Hernandez, SA Hertel, G Heuermann, GJ Homenides, M Horn, DQ Huang, D Hunt, E Jacquet, RS James, J Johnson, AC Kaboth, AC Kamaha, M Kannichankandy, D Khaitan, A Khazov, I Khurana, J Kim, YD Kim, J Kingston, R Kirk, D Kodroff, L Korley, EV Korolkova, M Koyuncu, H Kraus, S Kravitz, L Kreczko, VA Kudryavtsev, DS Leonard, KT Lesko, C Levy, J Lin, A Lindote, R Linehan, WH Lippincott, C Loniewski, MI Lopes, W Lorenzon, C Lu, S Luitz, PA Majewski, A Manalaysay, RL Mannino, C Maupin, ME McCarthy, G McDowell, DN McKinsey, J McLaughlin, JB Mclaughlin, R McMonigle, EH Miller, E Mizrachi, A Monte, ME Monzani, M Moongweluwan, JD Morales Mendoza, E Morrison, BJ Mount, M Murdy, Murphy, A Naylor, HN Nelson, F Neves, A Nguyen, JA Nikoleyczik, H Oh, I Olcina, MA Olevitch, KC Oliver-Mallory, J Orpwood, KJ Palladino, J Palmer, NJ Pannifer, N Parveen, SJ Patton, B Penning, G Pereira, E Perry, T Pershing, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, Q Riffard, GRC Rischbieter, HS Riyat, R Rosero, T Rushton, D Rynders, D Santone, R Sarkis, ABMR Sazzad, RW Schnee, S Shaw, T Shutt, JJ Silk, C Silva, G Sinev, J Siniscalco, W Skulski, R Smith, VN Solovov, P Sorensen, J Soria, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, M Szydagis, WC Taylor, DR Tiedt, M Timalsina, Z Tong, DR Tovey, J Tranter, M Trask, M Tripathi, DR Tronstad, A Vacheret, AC Vaitkus, J Vaitkus, O Valentino, V Velan, A Wang, JJ Wang, Y Wang, JR Watson, RC Webb, L Weeldreyer, TJ Whitis, M Williams, WJ Wisniewski, FLH Wolfs, JD Wolfs, S Woodford, D Woodward, CJ Wright, Q Xia, X Xiang, J Xu, M Yeh, J Yin
More details from the publisher
More details

First observation of single photons in a CRESST detector and new dark matter exclusion limits

Physical Review D American Physical Society (APS) 110:8 (2024) 083038

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D’Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, S Kuckuk, A Langenkämper, M Mancuso, L Marini, B Mauri, L Meyer, V Mokina, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, V Wagner, V Zema
More details from the publisher
More details

DoubleTES detectors to investigate the CRESST low energy background: results from above-ground prototypes

The European Physical Journal C SpringerOpen 84:10 (2024) 1001

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D’Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, H Kraus

Abstract:

In recent times, the sensitivity of low-mass direct dark matter searches has been limited by unknown low energy backgrounds close to the energy threshold of the experiments known as the low energy excess (LEE). The CRESST experiment utilises advanced cryogenic detectors constructed with different types of crystals equipped with Transition Edge Sensors (TESs) to measure signals of nuclear recoils induced by the scattering of dark matter particles in the detector. In CRESST, this low energy background manifests itself as a steeply rising population of events below 200 eV. A novel detector design named doubleTES using two identical TESs on the target crystal was studied to investigate the hypothesis that the events are sensor-related. We present the first results from two such modules, demonstrating their ability to differentiate between events originating from the crystal’s bulk and those occurring in the sensor or in its close proximity.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet