Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Mirjam Kümmerlin

Graduate Student

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Gene machines
Clarendon Laboratory, room 201
  • About
  • Publications

Tunable fluorogenic DNA probes drive fast and high-resolution single-molecule fluorescence imaging

Nucleic Acids Research Oxford University Press 53:13 (2025) gkaf593

Authors:

Mirjam Kümmerlin, Qing Zhao, Jagadish Hazra, Christof Hepp, Alison Farrar, Piers Turner, Achillefs N Kapanidis

Abstract:

A main limitation of single-molecule fluorescence (SMF) measurements is the 'high concentration barrier', describing the maximum concentration of fluorescent species tolerable for sufficient signal-to-noise ratio. To address this barrier in several SMF applications, we design fluorogenic probes based on short single-stranded DNAs, fluorescing only upon hybridizing to their complementary target sequence. We engineer the quenching efficiency and fluorescence enhancement upon duplex formation through screening several fluorophore-quencher combinations, label lengths, and sequence motifs, which we utilize as tuning screws to adapt our labels to different experimental designs. Using these fluorogenic probes, we can perform SMF experiments at concentrations of 10 μM fluorescent labels; this concentration is 100-fold higher than the operational limit for standard TIRF experiments. We demonstrate the ease of implementing these probes into existing protocols by performing super-resolution imaging with DNA-PAINT, employing a fluorogenic 6-nt-long imager; through the faster acquisition of binding events, the imaging of viral genome segments could be sped up significantly to achieve extraction of 20-nm structural features with only ∼150 s of imaging. The exceptional tunability of our probe design will overcome concentration barriers in SMF experiments and unlock new possibilities in super-resolution imaging, molecular tracking, and single-molecule fluorescence energy transfer (smFRET).
More details from the publisher
Details from ORA
More details
More details

Single-molecule imaging for unraveling the functional diversity of 10–23 DNAzymes

Analytical Chemistry American Chemical Society 97:25 (2025) 13300-13309

Authors:

Aida Montserrat Pagès, Mirjam Kümmerlin, Rebecca Andrews, Achillefs N Kapanidis, Dragana Spasic, Jeroen Lammertyn

Abstract:

DNA-based enzymes, also known as DNAzymes, have opened new opportunities for signal generation and amplification in several fields including biosensing. However, biosensor performance can be hampered by heterogeneity in the catalytic activity of such DNAzymes, especially when relying on a limited number of molecules to generate signal. In this regard, single-molecule studies are essential to discern the behavior among such heterogeneous molecules otherwise masked by ensemble measurements. This work presents a novel methodology to study the 10–23 RNA-cleaving DNAzyme at the single-molecule level. By means of measuring the distance-sensitive efficiency of Förster Resonance Energy Transfer using alternating-laser excitation on a superresolution microscope, we determined the kinetics of individual DNAzymes in terms of substrate turnover, rates of different reaction steps, and changes in performance over time. Our results revealed that, despite high concentrations of the reaction cofactor (i.e., Mg2+), a maximum of only 70% of the DNAzymes are actively cleaving multiple substrate sequences; the DNAzyme molecules also showed a wide range of substrate turnover rates. Our findings shed new light on the functional diversity of DNAzymes and the importance of exploring sequence modifications to improve their catalytic performance. Ultimately, this work presents a technique to obtain time-dependent information, which could be easily implemented to study other types of enzymes or biomolecular interactions.
More details from the publisher
Details from ORA
More details
More details

Engineering Modular and Tunable Single Molecule Sensors by Decoupling Sensing from Signal Output

(2023)

Authors:

Lennart Grabenhorst, Martina Pfeiffer, Thea Schinkel, Mirjam Kümmerlin, Jasmin B Maglic, Gereon A Brüggenthies, Florian Selbach, Alexander T Murr, Philip Tinnefeld, Viktorija Glembockyte
More details from the publisher

Bleaching-resistant,near-continuous single-molecule fluorescence and fret based on fluorogenic and transient DNA binding

ChemPhysChem Wiley 24:12 (2023) e202300175

Authors:

Mirjam Kümmerlin, Abhishek Mazumder, Achillefs N Kapanidis

Abstract:

Graphical Abstract
A general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule is presented. Using two orthogonal sequences, the authors show that their method is adaptable to Förster resonance energy transfer (FRET) and can be used to continuously study the conformational transitions of dynamic structures for extended periods (>1 hr).

Abstract
Photobleaching of fluorescent probes limits the observation span of typical single-molecule fluorescence measurements and hinders observation of dynamics at long timescales. Here, we present a general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule. Our strategy allows observation of near-continuous single-molecule fluorescence for more than an hour, a timescale two orders of magnitude longer than the typical photobleaching time of single fluorophores under our conditions. Using two orthogonal sequences, we show that our method is adaptable to Förster Resonance Energy Transfer (FRET) and that can be used to study the conformational dynamics of dynamic structures, such as DNA Holliday junctions, for extended periods. By adjusting the temporal resolution and observation span, our approach enables capturing the conformational dynamics of proteins and nucleic acids over a wide range of timescales.

More details from the publisher
Details from ORA
More details
More details

Overcoming the High Concentration Barrier in Single-Molecule Fluorescence Experiments through Adaptable Fluorogenic ssDNA Label

EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS 52:SUPPL 1 (2023) S192-S192

Authors:

Mirjam Kummerlin, Achillefs Kapanidis
More details

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet