Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
forecast-based-attribution-schematic
Credit: Nicholas Leach 2022

Dr Nicholas Leach

Senior Postdoctoral Research Assistant in Weather & Climate Impacts on Health

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
nicholas.leach@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 117
ORCiD profile.
Personal website.
Github profile.
Google scholar profile.
  • About
  • Publications

Generating samples of extreme winters to support climate adaptation

Weather and Climate Extremes Elsevier 36 (2022) 100419

Authors:

Nicholas Leach, Peter AG Watson, Sarah N Sparrow, David CH Wallom, David MH Sexton

Abstract:

Recent extreme weather across the globe highlights the need to understand the potential for more extreme events in the present-day, and how such events may change with global warming. We present a methodology for more efficiently sampling extremes in future climate projections. As a proof-of-concept, we examine the UK’s most recent set of national Climate Projections (UKCP18). UKCP18 includes a 15-member perturbed parameter ensemble (PPE) of coupled global simulations, providing a range of climate projections incorporating uncertainty in both internal variability and forced response. However, this ensemble is too small to adequately sample extremes with very high return periods, which are of interest to policy-makers and adaptation planners. To better understand the statistics of these events, we use distributed computing to run three 1000-member initial-condition ensembles with the atmosphere-only HadAM4 model at 60km resolution on volunteers’ computers, taking boundary conditions from three distinct future extreme winters within the UKCP18 ensemble. We find that the magnitude of each winter extreme is captured within our ensembles, and that two of the three ensembles are conditioned towards producing extremes by the boundary conditions. Our ensembles contain several extremes that would only be expected to be sampled by a UKCP18 PPE of over 500 members, which would be prohibitively expensive with current supercomputing resource. The most extreme winters we simulate exceed those within UKCP18 by 0.85 K and 37% of the present-day average for UK winter means of daily maximum temperature and precipitation respectively. As such, our ensembles contain a rich set of multivariate, spatio-temporally and physically coherent samples of extreme winters with wide-ranging potential applications.
More details from the publisher
Details from ORA
More details

Reliable heatwave attribution based on successful operational weather forecasts

(2022)

Authors:

Nicholas Leach, Christopher Roberts, Daniel Heathcote, Dann Mitchell, Vikki Thompson, Tim Palmer, Antje Weisheimer, Myles Allen
More details from the publisher

Forecast-based attribution of a winter heatwave within the limit of predictability

Proceedings of the National Academy of Sciences National Academy of Sciences 118:49 (2021) e2112087118

Authors:

Nicholas Leach, Antje Weisheimer, Myles Allen, Tim Palmer

Abstract:

The question of how humans have influenced individual extreme weather events is both scientifically and socially important. However, deficiencies in climate models’ representations of key mechanisms within the process chains that drive weather reduce our confidence in estimates of the human influence on extreme events. We propose that using forecast models that successfully predicted the event in question could increase the robustness of such estimates. Using a successful forecast means we can be confident that the model is able to faithfully represent the characteristics of the specific extreme event. We use this forecast-based methodology to estimate the direct radiative impact of increased CO2 concentrations (one component, but not the entirety, of human influence) on the European heatwave of February 2019.
More details from the publisher
Details from ORA
More details
More details

Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections.

Earth's future 9:6 (2021) e2020EF001900

Authors:

Z Nicholls, M Meinshausen, J Lewis, M Rojas Corradi, K Dorheim, T Gasser, R Gieseke, AP Hope, NJ Leach, LA McBride, Y Quilcaille, J Rogelj, RJ Salawitch, BH Samset, M Sandstad, A Shiklomanov, RB Skeie, CJ Smith, SJ Smith, X Su, J Tsutsui, B Vega-Westhoff, DL Woodard

Abstract:

Over the last decades, climate science has evolved rapidly across multiple expert domains. Our best tools to capture state-of-the-art knowledge in an internally self-consistent modeling framework are the increasingly complex fully coupled Earth System Models (ESMs). However, computational limitations and the structural rigidity of ESMs mean that the full range of uncertainties across multiple domains are difficult to capture with ESMs alone. The tools of choice are instead more computationally efficient reduced complexity models (RCMs), which are structurally flexible and can span the response dynamics across a range of domain-specific models and ESM experiments. Here we present Phase 2 of the Reduced Complexity Model Intercomparison Project (RCMIP Phase 2), the first comprehensive intercomparison of RCMs that are probabilistically calibrated with key benchmark ranges from specialized research communities. Unsurprisingly, but crucially, we find that models which have been constrained to reflect the key benchmarks better reflect the key benchmarks. Under the low-emissions SSP1-1.9 scenario, across the RCMs, median peak warming projections range from 1.3 to 1.7°C (relative to 1850-1900, using an observationally based historical warming estimate of 0.8°C between 1850-1900 and 1995-2014). Further developing methodologies to constrain these projection uncertainties seems paramount given the international community's goal to contain warming to below 1.5°C above preindustrial in the long-term. Our findings suggest that users of RCMs should carefully evaluate their RCM, specifically its skill against key benchmarks and consider the need to include projections benchmarks either from ESM results or other assessments to reduce divergence in future projections.
More details from the publisher
More details
More details

FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration

Geoscientific Model Development Copernicus GmbH 14:5 (2021) 3007-3036

Authors:

Nicholas J Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, Myles R Allen

Abstract:

Here we present an update to the FaIR model for use in probabilistic future climate and scenario exploration, integrated assessment, policy analysis, and education. In this update we have focussed on identifying a minimum level of structural complexity in the model. The result is a set of six equations, five of which correspond to the standard impulse response model used for greenhouse gas (GHG) metric calculations in the IPCC's Fifth Assessment Report, plus one additional physically motivated equation to represent state-dependent feedbacks on the response timescales of each greenhouse gas cycle. This additional equation is necessary to reproduce non-linearities in the carbon cycle apparent in both Earth system models and observations. These six equations are transparent and sufficiently simple that the model is able to be ported into standard tabular data analysis packages, such as Excel, increasing the potential user base considerably. However, we demonstrate that the equations are flexible enough to be tuned to emulate the behaviour of several key processes within more complex models from CMIP6. The model is exceptionally quick to run, making it ideal for integrating large probabilistic ensembles. We apply a constraint based on the current estimates of the global warming trend to a million-member ensemble, using the constrained ensemble to make scenario-dependent projections and infer ranges for properties of the climate system. Through these analyses, we reaffirm that simple climate models (unlike more complex models) are not themselves intrinsically biased “hot” or “cold”: it is the choice of parameters and how those are selected that determines the model response, something that appears to have been misunderstood in the past. This updated FaIR model is able to reproduce the global climate system response to GHG and aerosol emissions with sufficient accuracy to be useful in a wide range of applications and therefore could be used as a lowest-common-denominator model to provide consistency in different contexts. The fact that FaIR can be written down in just six equations greatly aids transparency in such contexts.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet