Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
forecast-based-attribution-schematic
Credit: Nicholas Leach 2022

Dr Nicholas Leach

Senior Postdoctoral Research Assistant in Weather & Climate Impacts on Health

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
nicholas.leach@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 117
ORCiD profile.
Personal website.
Github profile.
Google scholar profile.
  • About
  • Publications

Attribution of the Australian bushfire risk to anthropogenic climate change

Natural Hazards and Earth System Sciences Copernicus Publications 21:3 (2021) 941-960

Authors:

Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J Leach, Flavio Lehner, Kate R Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K Singh, Maarten K van Aalst, Sjoukje Y Philip, Robert Vautard, Friederike EL Otto

Abstract:

Disastrous bushfires during the last months of 2019 and January 2020 affected Australia, raising the question to what extent the risk of these fires was exacerbated by anthropogenic climate change. To answer the question for southeastern Australia, where fires were particularly severe, affecting people and ecosystems, we use a physically based index of fire weather, the Fire Weather Index; long-term observations of heat and drought; and 11 large ensembles of state-of-the-art climate models. We find large trends in the Fire Weather Index in the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis (ERA5) since 1979 and a smaller but significant increase by at least 30 % in the models. Therefore, we find that climate change has induced a higher weather-induced risk of such an extreme fire season. This trend is mainly driven by the increase of temperature extremes. In agreement with previous analyses we find that heat extremes have become more likely by at least a factor of 2 due to the long-term warming trend. However, current climate models overestimate variability and tend to underestimate the long-term trend in these extremes, so the true change in the likelihood of extreme heat could be larger, suggesting that the attribution of the increased fire weather risk is a conservative estimate. We do not find an attributable trend in either extreme annual drought or the driest month of the fire season, September–February. The observations, however, show a weak drying trend in the annual mean. For the 2019/20 season more than half of the July–December drought was driven by record excursions of the Indian Ocean Dipole and Southern Annular Mode, factors which are included in the analysis here. The study reveals the complexity of the 2019/20 bushfire event, with some but not all drivers showing an imprint of anthropogenic climate change. Finally, the study concludes with a qualitative review of various vulnerability and exposure factors that each play a role, along with the hazard in increasing or decreasing the overall impact of the bushfires.
More details from the publisher
Details from ORA
More details

Supplementary material to "FaIRv2.0.0: a generalised impulse-response model for climate uncertainty and future scenario exploration"

(2020)

Authors:

Nicholas J Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, Myles R Allen
More details from the publisher

Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response

Geoscientific Model Development Copernicus Publications 13:11 (2020) 5175-5190

Authors:

Zebedee RJ Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P Hope, Elmar Kriegler, Nicholas J Leach, Davide Marchegiani, Laura A McBride, Yann Quilcaille, Joeri Rogelj, Ross J Salawitch, Bjørn H Samset, Marit Sandstad, Alexey N Shiklomanov, Ragnhild B Skeie, Christopher J Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, Zhiang Xie
More details from the publisher

Anthropogenic influence on the 2018 summer warm spell in Europe: the impact of different spatio-temporal scales

Bulletin of the American Meteorological Society American Meteorological Society 101:S1 (2020) S41-S46

Authors:

Nicholas Leach, S Li, S Sparrow, GJ Van Oldenborgh, FC Lott, A Weisheimer, Allen

Abstract:

We demonstrate that, in attribution studies, events defined over longer time scales generally produce higher probability ratios due to lower interannual variability, reconciling seemingly inconsistent attribution results of Europe’s 2018 summer heatwaves in reported studies.
More details from the publisher
Details from ORA
More details

Pathways to Sustainable Land-Use and Food Systems in the United Kingdom by 2050

Chapter in Pathways to Sustainable Land-Use and Food Systems, 2020 Report of the FABLE Consortium, International Institute for Applied Systems Analysis (IIASA) and the Sustainable Development Solutions Network (SDSN) (2020) 626-655

Authors:

ALISON SMITH, Nicholas LEACH, Paula Harrison, Saher HASNAIN, Charles Godfray, Jim HALL, Michael OBERSTEINER

Abstract:

This chapter of the 2020 Report of the FABLE Consortium Pathways to Sustainable Land-Use and Food Systems outlines how sustainable food and land-use systems can contribute to raising climate ambition, aligning climate mitigation and biodiversity protection policies, and achieving other sustainable development priorities in the UK. It presents three pathways for food and land-use systems for the period 2020-2050: Current Trends, Sustainable Medium Ambition, and Sustainable High Ambition (referred to as “Current Trends”, “Sustainable”, and “Sustainable +” in all figures throughout this chapter). These pathways examine the trade-offs between achieving the FABLE Targets under limited land availability and constraints to balance supply and demand at national and global levels. We developed these pathways in consultation with national stakeholders and experts, including from the Department for Food, Agriculture and Rural Affairs (Defra), the Department for Business, Energy and Industrial Strategy (BEIS), the Department for International Trade (DIT), the Department for Agriculture, Environment and Rural Affairs in Northern Ireland (DAERA), the Scottish Government, the Welsh Government, the Committee on Climate Change, the Royal Society, the Royal Academy of Engineering, and UK Research and Innovation (UKRI), and modeled them with the FABLE Calculator (Mosnier, Penescu, Thomson, and Perez-Guzman, 2019). See Annex 1 for more details on the adaptation of the model to the national context.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet