Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Single trapped ion

Single trapped ion

Credit: David Nadlinger

David Lucas

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
David.Lucas@physics.ox.ac.uk
Telephone: 01865 (2)72384,01865 (2)72346
Clarendon Laboratory, room -170,-172,-171,316.6
  • About
  • Publications

High-rate high-fidelity entanglement of qubits across an elementary quantum network

Physical Review Letters American Physical Society 124:11 (2020) 110501

Authors:

Laurent Stephenson, David Nadlinger, Bethan Nichol, Peter Drmota, Timothy Ballance, Keshav Thirumalai, Joseph Goodwin, David Lucas, Christopher Ballance

Abstract:

We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88Sr+ qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate heralded Bell pairs with fidelity 94% at an average rate 182 s−1 (success probability 2.18×10−4).

More details from the publisher
Details from ORA
More details
More details

High-rate, high-fidelity entanglement of qubits across an elementary quantum network

(2019)

Authors:

LJ Stephenson, DP Nadlinger, BC Nichol, S An, P Drmota, TG Ballance, K Thirumalai, JF Goodwin, DM Lucas, CJ Ballance
More details from the publisher
Details from ArXiV

Probing Qubit Memory Errors at the Part-per-Million Level.

Physical review letters 123:11 (2019) 110503-110503

Authors:

MA Sepiol, AC Hughes, JE Tarlton, DP Nadlinger, TG Ballance, CJ Ballance, TP Harty, AM Steane, JF Goodwin, DM Lucas

Abstract:

Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error ε_{m} for a ^{43}Ca^{+} trapped-ion qubit in the small-error regime and find ε_{m}<10^{-4} for storage times t≲50  ms. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at t=1  ms we measure ε_{m}=1.2(7)×10^{-6}, around ten times smaller than that extrapolated from the T_{2}^{*} time, and limited by instability of the atomic clock reference used to benchmark the qubit.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Probing Qubit Memory Errors at the Part-per-Million Level

(2019)

Authors:

MA Sepiol, AC Hughes, JE Tarlton, DP Nadlinger, TG Ballance, CJ Ballance, TP Harty, AM Steane, JF Goodwin, DM Lucas
More details from the publisher

Magnetic field stabilization system for atomic physics experiments.

The Review of scientific instruments 90:4 (2019) 044702-044702

Authors:

B Merkel, K Thirumalai, JE Tarlton, VM Schäfer, CJ Ballance, TP Harty, DM Lucas

Abstract:

Atomic physics experiments commonly use millitesla-scale magnetic fields to provide a quantization axis. As atomic transition frequencies depend on the magnitude of this field, many experiments require a stable absolute field. Most setups use electromagnets, which require a power supply stability not usually met by commercially available units. We demonstrate the stabilization of a field of 14.6 mT to 4.3 nT rms noise (0.29 ppm), compared to noise of >100 nT without any stabilization. The rms noise is measured using a field-dependent hyperfine transition in a single 43Ca+ ion held in a Paul trap at the center of the magnetic field coils. For the 43Ca+ "atomic clock" qubit transition at 14.6 mT, which depends on the field only in second order, this would yield a projected coherence time of many hours. Our system consists of a feedback loop and a feedforward circuit that control the current through the field coils and could easily be adapted to other field amplitudes, making it suitable for other applications such as neutral atom traps.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet