High-rate high-fidelity entanglement of qubits across an elementary quantum network
Physical Review Letters American Physical Society 124:11 (2020) 110501
Abstract:
We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88Sr+ qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate heralded Bell pairs with fidelity 94% at an average rate 182 s−1 (success probability 2.18×10−4).
High-rate, high-fidelity entanglement of qubits across an elementary quantum network
(2019)
Probing Qubit Memory Errors at the Part-per-Million Level.
Physical review letters 123:11 (2019) 110503-110503
Abstract:
Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error ε_{m} for a ^{43}Ca^{+} trapped-ion qubit in the small-error regime and find ε_{m}<10^{-4} for storage times t≲50 ms. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at t=1 ms we measure ε_{m}=1.2(7)×10^{-6}, around ten times smaller than that extrapolated from the T_{2}^{*} time, and limited by instability of the atomic clock reference used to benchmark the qubit.Magnetic field stabilization system for atomic physics experiments.
The Review of scientific instruments 90:4 (2019) 044702-044702