Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Andre Lukas

Professor of Theoretical Physics, Head of Theoretical Physics

Research theme

  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Andre.Lukas@physics.ox.ac.uk
Telephone: 01865 (2)73953
Rudolf Peierls Centre for Theoretical Physics, room 70.11
  • About
  • Publications

Heterotic Line Bundle Standard Models

(2012)

Authors:

Lara B Anderson, James Gray, Andre Lukas, Eran Palti
More details from the publisher

Heterotic line bundle standard models

Journal of High Energy Physics 2012:6 (2012)

Authors:

LB Anderson, J Gray, A Lukas, E Palti

Abstract:

In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the allowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible here. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.
More details from the publisher
More details
Details from ArXiV

Heterotic bundles on Calabi-Yau manifolds with small Picard number

Journal of High Energy Physics 2011:12 (2011)

Authors:

YH He, M Kreuzer, SJ Lee, A Lukas

Abstract:

We undertake a systematic scan of vector bundles over spaces from the largest database of known Calabi-Yau three-folds, in the context of heterotic string compactification. Specifically, we construct positive rank five monad bundles over Calabi-Yau hypersurfaces in toric varieties, with the number of Kähler moduli equal to one, two, and three and extract physically interesting models. We select models which can lead to three families of matter after dividing by a freely-acting discrete symmetry and including Wilson lines. About 2000 such models on two manifolds are found. © SISSA 2011.
More details from the publisher
More details
Details from ArXiV

Heterotic standard models from smooth calabi-Yau three-folds

Proceedings of Science (2011)

Authors:

LB Anderson, J Gray, A Lukas, E Palti

Abstract:

We describe a new approach to heterotic Calabi-Yau model building, based on the systematic construction of vector bundles with Abelian structure groups. Starting with a relatively small number of Calabi-Yau manifolds, about 400 models with the exact matter spectrum of the supersymmet-ric standard model are found in this way. The additional, normally anomalous U(1) symmetries which arise in these models place strong constraints on the allowed four-dimensional operators and can lead to interesting phenomenological consequences, some of which we discuss.
More details from the publisher

The Atiyah class and complex structure stabilization in heterotic Calabi-Yau compactifications

Journal of High Energy Physics 2011:10 (2011)

Authors:

LB Anderson, J Gray, A Lukas, B Ovrut

Abstract:

Holomorphic gauge fields in N = 1 supersymmetric heterotic compactifications can constrain the complex structure moduli of a Calabi-Yau manifold. In this paper, the tools necessary to use holomorphic bundles as a mechanism for moduli stabilization are systematically developed. We review the requisite deformation theory - including the Atiyah class, which determines the deformations of the complex structure for which the gauge bundle becomes non-holomorphic and, hence, non-supersymmetric. In addition, two equivalent approaches to this mechanism of moduli stabilization are presented. The first is an efficient computational algorithm for determining the supersymmetric moduli space, while the second is an F-term potential in the four-dimensional theory associated with vector bundle holomorphy. These three methods are proven to be rigorously equivalent. We present explicit examples in which large numbers of complex structure moduli are stabilized. Finally, higher-order corrections to the moduli space are discussed. © 2011 SISSA.
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet