Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Andre Lukas

Professor of Theoretical Physics, Head of Theoretical Physics

Research theme

  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Andre.Lukas@physics.ox.ac.uk
Telephone: 01865 (2)73953
Rudolf Peierls Centre for Theoretical Physics, room 70.11
  • About
  • Publications

Heterotic M-Theory Cosmology in Four and Five Dimensions

(2000)

Authors:

Matthias Braendle, Andre Lukas, Burt A Ovrut
More details from the publisher

Boundary inflation

Physical Review D - Particles, Fields, Gravitation and Cosmology 61:2 (2000)

Abstract:

Inflationary solutions are constructed in a specific five-dimensional model with boundaries motivated by heterotic M theory. We concentrate on the case where the vacuum energy is provided by potentials on those boundaries. It is pointed out that the presence of such potentials necessarily excites bulk fields. We distinguish a linear and a non-linear regime for those modes. In the linear regime, inflation can be discussed in an effective four-dimensional theory in the conventional way. This effective action is derived by integrating out the bulk modes. Therefore, these modes do not give rise to excited Kaluza-Klein modes from a four-dimensional perspective. We lift a four-dimensional inflating solution up to five dimensions where it represents an inflating domain wall pair. This shows explicitly the inhomogeneity in the fifth dimension. We also demonstrate the existence of inflating solutions with unconventional properties in the non-linear regime. Specifically, we find solutions with and without an horizon between the two boundaries. These solutions have certain problems associated with the stability of the additional dimension and the persistence of initial excitations of the Kaluza-Klein modes. © 1999 The American Physical Society.
More details from the publisher

Heterotic anomaly cancellation in five dimensions

Journal of High Energy Physics 4:1 (2000) 18-49

Authors:

A Lukas, KS Stelle

Abstract:

We study the constraints on five-dimensional script N = 1 heterotic M-theory imposed by a consistent anomaly-free coupling of bulk and boundary theory. This requires analyzing the cancellation of triangle gauge anomalies on the four-dimensional orbifold planes due to anomaly inflow from the bulk. We find that the semi-simple part of the orbifold gauge groups and certain U(1) symmetries have to be free of quantum anomalies. In addition there can be several anomalous U(1) symmetries on each orbifold plane whose anomalies are cancelled by a non-trivial variation of the bulk vector fields. The mixed U(1) non-abelian anomaly is universal and there is at most one U(1) symmetry with such an anomaly on each plane. In an alternative approach, we also analyze the coupling of five-dimensional gauged supergravity to orbifold gauge theories. We find a somewhat generalized structure of anomaly cancellation in this case which allows, for example, non-universal mixed U(1) gauge anomalies. Anomaly cancellation from the perspective of four-dimensional script N = 1 effective actions obtained from E8 x E8 heterotic string- or M-theory by reduction on a Calabi-Yau three-fold is studied as well. The results are consistent with the ones found for five-dimensional heterotic M-theory. Finally, we consider some related issues of phenomenological interest such as model building with anomalous U(1) symmetries, Fayet-Illiopoulos terms and threshold corrections to gauge kinetic functions.
More details from the publisher

Boundary inflation

PHYSICAL REVIEW D 61:2 (2000) ARTN 023506

Authors:

A Lukas, BA Ovrut, D Waldram
More details from the publisher
Details from ArXiV

Cosmological perturbations in brane-world theories: Formalism

PHYSICAL REVIEW D 62:12 (2000) ARTN 123515

Authors:

C van de Bruck, M Dorca, RH Brandenberger, A Lukas
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • Current page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet