Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Andre Lukas

Professor of Theoretical Physics, Head of Theoretical Physics

Research theme

  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Andre.Lukas@physics.ox.ac.uk
Telephone: 01865 (2)73953
Rudolf Peierls Centre for Theoretical Physics, room 70.11
  • About
  • Publications

Discrete Gauge Symmetries in Axionic Extensions of the SSM

(1992)

Authors:

EJ Chun, A Lukas
More details from the publisher

E6 GUT and Large Neutrino Mixing

(1992)

Authors:

Y Achiman, A Lukas
More details from the publisher

Calabi-Yau Manifolds and SU(3) Structure

Journal of High Energy Physics Springer Verlag (Germany)

Authors:

Magdalena Larfors, Andre Lukas, Fabian Ruehle

Abstract:

We show that non-trivial SU(3) structures can be constructed on large classes of Calabi-Yau three-folds. Specifically, we focus on Calabi-Yau three-folds constructed as complete intersections in products of projective spaces, although we expect similar methods to apply to other constructions and also to Calabi-Yau four-folds. Among the wide range of possible SU(3) structures we find Strominger-Hull systems, suitable for heterotic or type II string compactifications, on all complete intersection Calabi-Yau manifolds. These SU(3) structures of Strominger-Hull type have a non-vanishing and non-closed three-form flux which needs to be supported by source terms in the associated Bianchi identity. We discuss the possibility of finding such source terms and present first steps towards their explicit construction. Provided suitable sources exist, our methods lead to Calabi-Yau compactifications of string theory with a non Ricci-flat, physical metric which can be written down explicitly and in analytic form.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Flops, Gromov-Witten Invariants and Symmetries of Line Bundle Cohomology on Calabi-Yau Three-folds

Authors:

Callum R Brodie, Andrei Constantin, Andre Lukas

Abstract:

The zeroth line bundle cohomology on Calabi-Yau three-folds encodes information about the existence of flop transitions and the genus zero Gromov-Witten invariants. We illustrate this claim by studying several Picard number 2 Calabi-Yau three-folds realised as complete intersections in products of projective spaces. Many of these manifolds exhibit certain symmetries on the Picard lattice which preserve the zeroth cohomology.
Details from ArXiV

Machine Learning String Standard Models

CERN-TH-2020-050, CTPU-PTC-20-06

Authors:

Rehan Deen, Yang-Hui He, Seung-Joo Lee, Andre Lukas

Abstract:

We study machine learning of phenomenologically relevant properties of string compactifications, which arise in the context of heterotic line bundle models. Both supervised and unsupervised learning are considered. We find that, for a fixed compactification manifold, relatively small neural networks are capable of distinguishing consistent line bundle models with the correct gauge group and the correct chiral asymmetry from random models without these properties. The same distinction can also be achieved in the context of unsupervised learning, using an auto-encoder. Learning non-topological properties, specifically the number of Higgs multiplets, turns out to be more difficult, but is possible using sizeable networks and feature-enhanced data sets.
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • Current page 64
  • Page 65
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet