Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Magorrian

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Theoretical astrophysics and plasma physics at RPC
John.Magorrian@physics.ox.ac.uk
  • About
  • Publications

A relationship between nuclear black hole mass and galaxy velocity dispersion

Astrophysical Journal 539:1 PART 2 (2000) L13-L16

Authors:

K Gebhardt, R Bender, G Bower, A Dressler, SM Faber, AV Filippenko, R Green, C Grillmair, LC Ho, J Kormendy, TR Lauer, J Magorrian, J Pinkney, D Richstone, S Tremaine

Abstract:

We describe a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius. The result is based on a sample of 26 galaxies, including 13 galaxies with new determinations of black hole masses from Hubble Space Telescope measurements of stellar kinematics. The best-fit correlation is Mbh = 1.2(±0.2) × 108 M⊙(σe/200 km s-1)3.75 (±0.3)over almost 3 orders of magnitude in Mbh; the scatter in Mbh at fixed σe is only 0.30 dex, and most of this is due to observational errors. The Mbh-σe relation is of interest not only for its strong predictive power but also because it implies that central black hole mass is constrained by and closely related to properties of the host galaxy's bulge.
More details from the publisher
More details

Black Hole Mass Estimates from Reverberation Mapping and from Spatially Resolved Kinematics

(2000)

Authors:

Karl Gebhardt, John Kormendy, Luis Ho, Ralf Bender, Gary Bower, Alan Dressler, SM Faber, Alexei Filippenko, Richard Green, Carl Grillmair, Tod Lauer, John Magorrian, Jason Pinkney, Douglas Richstone, Scott Tremaine
More details from the publisher

A Relationship Between Nuclear Black Hole Mass and Galaxy Velocity Dispersion

(2000)

Authors:

Karl Gebhardt, Ralf Bender, Gary Bower, Alan Dressler, SM Faber, Alexei V Filippenko, Richard Green, Carl Grillmair, Luis C Ho, John Kormendy, Tod R Lauer, John Magorrian, Jason Pinkney, Douglas Richstone, Scott Tremaine
More details from the publisher

Axisymmetric, three-integral models of galaxies: A massive black hole in NGC 3379

Astronomical Journal 119:3 (2000) 1157-1171

Authors:

K Gebhardt, D Richstone, J Kormendy, TR Lauer, EA Ajhar, R Bender, A Dressler, SM Faber, C Grillmair, J Magorrian, S Tremaine

Abstract:

We fit axisymmetric three-integral dynamical models to NGC 3379 using the line-of-sight velocity distribution obtained from Hubble Space Telescope FOS spectra of the galaxy center and ground-based long-slit spectroscopy along four position angles, with the light distribution constrained by WFPC2 and ground-based images. We have fitted models with inclinations from 29° (intrinsic galaxy type E5) to 90° (intrinsic E1) and black hole masses from 0 to 109 M⊙. The best-fit black hole masses range from 6 × 107 to 2 × 108 M⊙, depending on inclination. The preferred inclination is 90° (edge-on); however, the constraints on allowed inclination are not very strong, owing to our assumption of constant M/LV. The velocity ellipsoid of the best model is not consistent with either isotropy or a two-integral distribution function. Along the major axis, the velocity ellipsoid becomes tangential at the innermost bin, radial in the midrange radii, and tangential again at the outermost bins. The rotation rises quickly at small radii owing to the presence of the black hole. For the acceptable models, the radial-to-tangential [(σ2θ + σ2φ)/2] dispersion in the midrange radii ranges over 1.1 < σr/σt < 1.7, with the smaller black holes requiring larger radial anisotropy. Compared with these three-integral models, two-integral isotropic models overestimate the black hole mass since they cannot provide adequate radial motion. However, the models presented in this paper still contain restrictive assumptions - namely, assumptions of constant M/LV and spheroidal symmetry - requiring yet more models to study black hole properties in complete generality.
More details from the publisher
More details

The velocity and mass distribution of clusters of galaxies from the CNOC1 cluster redshift survey

Astronomical Journal 119:5 (2000) 2038-2052

Authors:

RP Van Der Marel, J Magorrian, RG Carlberg, HKC Yee, E Ellingson

Abstract:

In the context of the CNOC1 cluster survey, redshifts were obtained for galaxies in 16 clusters. The resulting sample is ideally suited for an analysis of the internal velocity and mass distribution of clusters. Previous analyses of this data set used the Jeans equation to model the projected velocity dispersion profile. However, the results of such an analysis always yield a strong degeneracy between the mass density profile and the velocity dispersion anisotropy profile. Here we analyze the full (R, v) data set of galaxy positions and velocities in an attempt to break this degeneracy. We build an "ensemble cluster" from the individual clusters under the assumption that they form a homologous sequence; if clusters are not homologous then our results are probably still valid in an average sense. To interpret the data we study a one-parameter family of spherical models with different constant velocity dispersion anisotropy, chosen to all provide the same acceptable fit to the projected velocity dispersion profile. The best-fit model is sought using a variety of statistics, including the likelihood of the data set and the shape and Gauss-Hermite moments of the grand-total velocity histogram. The confidence regions and goodness of fit for the best-fit model are determined using Monte Carlo simulations. Although the results of our analysis depend slightly on which statistic is used to judge the models, all statistics agree that the best-fit model is close to isotropic. For none of the statistics does the 1 σ confidence region extend below σr/σt = 0.74, or above σr/σt, = 1.05. This result derives primarily from the fact that the observed grand-total velocity histogram is close to Gaussian, which is not expected to be the case for a strongly anisotropic model. The best-fitting models have a mass-to-number density ratio that is approximately independent of radius over the range constrained by the data. They also have a mass density profile that is consistent with the dark matter halo profile advocated by Navarro, Frenk, & White in terms of both the profile shape and the characteristic scale length. This adds important new weight to the evidence that clusters do indeed follow this proposed universal mass density profile. We present a detailed discussion of a number of possible uncertainties in our analysis, including our treatment of interlopers and brightest cluster galaxies, our use of a restricted one-parameter family of distribution functions, our use of spherical models for what is in reality an ensemble of nonspherical clusters, and our assumption that clusters form a homologous set. These issues all constitute important approximations in our analysis. However, none of the tests that we have done indicates that these approximations influence our results at a significant level.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet