A relationship between nuclear black hole mass and galaxy velocity dispersion
Astrophysical Journal 539:1 PART 2 (2000)
Abstract:
We describe a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius. The result is based on a sample of 26 galaxies, including 13 galaxies with new determinations of black hole masses from Hubble Space Telescope measurements of stellar kinematics. The best-fit correlation is Mbh = 1.2(±0.2) × 108 M⊙(σe/200 km s-1)3.75 (±0.3)over almost 3 orders of magnitude in Mbh; the scatter in Mbh at fixed σe is only 0.30 dex, and most of this is due to observational errors. The Mbh-σe relation is of interest not only for its strong predictive power but also because it implies that central black hole mass is constrained by and closely related to properties of the host galaxy's bulge.Black Hole Mass Estimates from Reverberation Mapping and from Spatially Resolved Kinematics
(2000)
A Relationship Between Nuclear Black Hole Mass and Galaxy Velocity Dispersion
(2000)
Axisymmetric, three-integral models of galaxies: A massive black hole in NGC 3379
Astronomical Journal 119:3 (2000) 1157-1171
Abstract:
We fit axisymmetric three-integral dynamical models to NGC 3379 using the line-of-sight velocity distribution obtained from Hubble Space Telescope FOS spectra of the galaxy center and ground-based long-slit spectroscopy along four position angles, with the light distribution constrained by WFPC2 and ground-based images. We have fitted models with inclinations from 29° (intrinsic galaxy type E5) to 90° (intrinsic E1) and black hole masses from 0 to 109 M⊙. The best-fit black hole masses range from 6 × 107 to 2 × 108 M⊙, depending on inclination. The preferred inclination is 90° (edge-on); however, the constraints on allowed inclination are not very strong, owing to our assumption of constant M/LV. The velocity ellipsoid of the best model is not consistent with either isotropy or a two-integral distribution function. Along the major axis, the velocity ellipsoid becomes tangential at the innermost bin, radial in the midrange radii, and tangential again at the outermost bins. The rotation rises quickly at small radii owing to the presence of the black hole. For the acceptable models, the radial-to-tangential [(σ2θ + σ2φ)/2] dispersion in the midrange radii ranges over 1.1 < σr/σt < 1.7, with the smaller black holes requiring larger radial anisotropy. Compared with these three-integral models, two-integral isotropic models overestimate the black hole mass since they cannot provide adequate radial motion. However, the models presented in this paper still contain restrictive assumptions - namely, assumptions of constant M/LV and spheroidal symmetry - requiring yet more models to study black hole properties in complete generality.The velocity and mass distribution of clusters of galaxies from the CNOC1 cluster redshift survey
Astronomical Journal 119:5 (2000) 2038-2052