Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Magorrian

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Theoretical astrophysics and plasma physics at RPC
John.Magorrian@physics.ox.ac.uk
  • About
  • Publications

Nuclear spirals in the inner Milky Way

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:2 (2017) 2251-2262

Authors:

Matthew Ridley, MC Sormani, RG Treß, John Magorrian, RS Klessen

Abstract:

We use hydrodynamical simulations to construct a new coherent picture for the gas flow in the Central Molecular Zone (CMZ), the region of our Galaxy within R ≲ 500  pc. We relate connected structures observed in (l, b, v) data cubes of molecular tracers to nuclear spiral arms. These arise naturally in hydrodynamical simulations of barred galaxies, and are similar to those that can be seen in external galaxies such as NGC 4303 or NGC 1097. We discuss a face-on view of the CMZ, including the positions of several prominent molecular clouds, such as Sgr B2, the 20 and 50 km s−1 clouds, the polar arc, Bania Clump 2 and Sgr C. Our model is also consistent with the larger scale gas flow, up to R ≃ 3 kpc, thus providing a consistent picture of the entire Galactic bar region.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Nuclear Spirals in the inner Milky Way

(2017)

Authors:

Matthew Ridley, Mattia C Sormani, Robin G Treß, John Magorrian, Ralf S Klessen
More details from the publisher

The secular evolution of discrete quasi-Keplerian systems. I. Kinetic theory of stellar clusters near black holes

Astronomy and Astrophysics EDP Sciences 598 (2017) A71

Authors:

J-B Fouvry, C Pichon, John Magorrian

Abstract:

We derive the kinetic equation that describes the secular evolution of a large set of particles orbiting a dominant massive object, such as stars bound to a supermassive black hole or a proto-planetary debris disc encircling a star. Because the particles move in a quasi-Keplerian potential, their orbits can be approximated by ellipses whose orientations remain fixed over many dynamical times. The kinetic equation is obtained by simply averaging the BBGKY equations over the fast angle that describes motion along these ellipses. This so-called Balescu-Lenard equation describes self-consistently the long-term evolution of the distribution of quasi-Keplerian orbits around the central object: it models the diffusion and drift of their actions, induced through their mutual resonant interaction. Hence, it is the master equation that describes the secular effects of resonant relaxation. We show how it captures the phenonema of mass segregation and of the relativistic Schwarzschild barrier recently discovered in N-body simulations.
More details from the publisher
Details from ORA
More details
More details

A low upper mass limit for the central black hole in the late-type galaxy NGC 4414

(2016)

Authors:

Sabine Thater, Davor Krajnović, Martin A Bourne, Michele Cappellari, Tim de Zeeuw, Eric Emsellem, John Magorrian, Richard M McDermid, Marc Sarzi, Glenn van de Ven
More details from the publisher

The secular evolution of discrete quasi-Keplerian systems. I. Kinetic theory of stellar clusters near black holes

(2016)

Authors:

Jean-Baptiste Fouvry, Christophe Pichon, John Magorrian
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet