Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

David Marshall

Professor of Physical Oceanography

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Physical oceanography
David.Marshall@physics.ox.ac.uk
Telephone: 01865 (2)72099
Robert Hooke Building, room F47
my personal webpage (external)
  • About
  • Publications

Significant sink of ocean-eddy energy near western boundaries

Nature Geoscience 3:9 (2010) 608-612

Authors:

X Zhai, HL Johnson, DP Marshall

Abstract:

Ocean eddies generated through instability of the mean flow are a vital component of the energy budget of the global ocean1-3. In equilibrium, the sources and sinks of eddy energy have to be balanced. However, where and how eddy energy is removed remains uncertain3,4. Ocean eddies are observed to propagate westwards at speeds similar to the phase speeds of classical Rossby waves5, but what happens to the eddies when they encounter the western boundary is unclear. Here we use a simple reduced-gravity model along with satellite altimetry data to show that the western boundary acts as a "graveyardg" for the westward-propagating ocean eddies. We estimate a convergence of eddy energy near the western boundary of approximately 0.1-0.3 TW, poleward of 10°in latitude. This energy is most probably scattered into high-wavenumber vertical modes, resulting in energy dissipation and diapycnal mixing. If confirmed, this eddy-energy sink will have important implications for the ocean circulation. © 2010 Macmillan Publishers Limited. All rights reserved.
More details from the publisher
More details

Idealised flow past an island in a dynamically adaptive finite element model

Ocean Dynamics 60:4 (2010) 835-850

Authors:

DR Munday, DP Marshall, MD Piggott

Abstract:

The problem of flow separation around islands is investigated using a dynamically adaptive finite element model to allow for resolution of the shear layers that form in the advent of separation. The changes in secondary circulation and vertical motion that occur in both attached and separated flows are documented, as is the degree of closure of the wake eddies. In the numerical experiments presented, the strongest motion always takes place at the sides of the idealised island, where flow curvature and shear act together to induce ascent. In contrast, it is the slower motion within the wake eddies that allow streamlines to extend from the bottom to the surface. We find no evidence for closure of the wake eddies. Rather, all of our separated experiments show that streamlines that pass through the eddies originate outside of the shear layers and frictional boundary layers on the upstream side of the idealised island. The numerical experiments demonstrate the potential for dynamically adaptive, unstructured meshes to resolve the separated shear layers that occur downstream of the idealised island, as well as the narrow boundary layers that form on the island itself. © 2010 Springer-Verlag.
More details from the publisher
More details

Where do winds drive the antarctic circumpolar current?

Geophysical Research Letters 37:12 (2010)

Authors:

LC Allison, HL Johnson, DP Marshall, DR Munday

Abstract:

The strength of the Antarctic Circumpolar Current (ACC) is believed to depend on the westerly wind stress blowing over the Southern Ocean, although the exact relationship between winds and circumpolar transport is yet to be determined. Here we show, based on theoretical arguments and a hierarchy of numerical modeling experiments, that the global pycnocline depth and the baroclinic ACC transport are set by an integral measure of the wind stress over the path of the ACC, taking into account its northward deflection. Our results assume that the mesoscale eddy diffusivity is independent of the mean flow; while the relationship between wind stress and ACC transport will be more complicated in an eddy-saturated regime, our conclusion that the ACC is driven by winds over the circumpolar streamlines is likely to be robust. Copyright 2010 by the American Geophysical Union.
More details from the publisher
More details

Oscillatory sensitivity of Atlantic overturning to high-latitude forcing

Geophysical Research Letters 37:10 (2010)

Authors:

L Czeschel, DP Marshall, HL Johnson

Abstract:

The Atlantic Meridional Overturning Circulation (AMOC) carries warm upper waters into northern highlatitudes and returns cold deep waters southward. Under anthropogenic greenhouse gas forcing the AMOC is expected to weaken due to high-latitude warming and freshening. Here, we show that the sensitivity of the AMOC to an impulsive forcing at high latitudes is an oscillatory function of forcing lead time. This leads to the counter-intuitive result that a stronger AMOC can emerge as a result of, although some years after, anomalous warming at high latitudes. In our model study, there is no simple one-to-one correspondence between buoyancy forcing anomalies and AMOC variations, which retain memory of surface buoyancy fluxes in the subpolar gyre for 15-20 years. These results make it challenging to detect secular change from short observational time series. Copyright © 2010 by the American Geophysical Union.
More details from the publisher
More details

Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold's first stability theorem

Ocean Modelling 32:3-4 (2010) 188-204

Authors:

DP Marshall, AJ Adcroft

Abstract:

A family of eddy closures is studied that flux potential vorticity down-gradient and solve an explicit budget for the eddy energy, following the approach developed by Eden and Greatbatch (2008, Ocean Modelling). The aim of this manuscript is to demonstrate that when energy conservation is satisfied in this manner, the growth or decay of the parameterized eddy energy relates naturally to the instability or stability of the flow as described by Arnold's first stability theorem. The resultant family of eddy closures therefore possesses some of the ingredients necessary to parameterize the gross effects of eddies in both forced-dissipative and freely-decaying turbulence. These ideas are illustrated through their application to idealized, barotropic wind-driven gyres in which the maximum eddy energy occurs within the viscous boundary layers and separated western boundary currents, and to freely-decaying turbulence in a closed barotropic basin in which inertial Fofonoff gyres emerge as the long-time solution. The result that these eddy closures preserve the relation between the growth or decay of eddy energy and the instability or stability of the flow provides further support for their use in ocean general circulation models. © 2010 Elsevier Ltd.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet