Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

David Marshall

Professor of Physical Oceanography

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Physical oceanography
David.Marshall@physics.ox.ac.uk
Telephone: 01865 (2)72099
Robert Hooke Building, room F47
my personal webpage (external)
  • About
  • Publications

Small and mesoscale processes and their impact on the large scale - Preface

DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY 51:25-26 (2004) 2881-2881

Authors:

H van Haren, LS Laurent, D Marshall
More details from the publisher

Understanding the structure of the subtropical thermocline

Journal of Physical Oceanography 33:6 (2003) 1240-1249

Authors:

JA Polton, DP Marshall

Abstract:

Closing a gyre with a western boundary current imposes a constraint on its vertical structure that requires there to be no net vertical flux of potential vorticity through any closed pressure contour in steady state. This constraint resembles the traditional similarity balance for the internal thermocline, with additional terms representing friction in the western boundary current and convection in the mixed layer. The terms in the integral constraint are diagnosed in a planetary geostrophic ocean model and are used to understand the coexistence of ventilated and internal thermoclines within the subtropical gyre.
More details from the publisher
More details

A Theory for the Surface Atlantic Response to Thermohaline Variability

Journal of Physical Oceanography 32 (2002) 1121-1132

Authors:

DP Marshall, Helen L. Johnson
More details from the publisher
More details

Localization of abrupt change in the North Atlantic thermohaline circulation

Geophysical Research Letters 29:6 (2002) 7-1-7-4

Authors:

HL Johnson, DP Marshall

Abstract:

Recent climate model experiments, as well as paleoclimate records, suggest that the meridional overturning circulation or "thermohaline circulation" in the Atlantic Ocean could change abruptly as a result of global warming, and that this could have a significant impact on European climate. We use a reduced-gravity model to investigate the response of the Atlantic overturning circulation to changes in forcing. We find that variability at decadal and higher frequencies is confined to a single hemisphere. This implies that (a) overturning variability resulting from high frequency changes in buoyancy forcing in the Labrador and Greenland Seas will be limited to the North Atlantic, and (b) any observed decadal and higher frequency fluctuations in North Atlantic overturning can only result from changes in the surface fluxes within the North Atlantic basin itself. These results suggest that Southern Ocean wind forcing is not important for North Atlantic overturning on decadal and shorter timescales.

Localization of abrupt change in the North Atlantic thermohaline circulation

Geophysical Research Letters 29:6 (2002) 7-1-7-4

Authors:

HL Johnson, DP Marshall

Abstract:

Recent climate model experiments, as well as paleoclimate records, suggest that the meridional overturning circulation or "thermohaline circulation" in the Atlantic Ocean could change abruptly as a result of global warming, and that this could have a significant impact on European climate. We use a reduced-gravity model to investigate the response of the Atlantic overturning circulation to changes in forcing. We find that variability at decadal and higher frequencies is confined to a single hemisphere. This implies that (a) overturning variability resulting from high frequency changes in buoyancy forcing in the Labrador and Greenland Seas will be limited to the North Atlantic, and (b) any observed decadal and higher frequency fluctuations in North Atlantic overturning can only result from changes in the surface fluxes within the North Atlantic basin itself. These results suggest that Southern Ocean wind forcing is not important for North Atlantic overturning on decadal and shorter timescales.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet