Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

David Marshall

Professor of Physical Oceanography

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Physical oceanography
David.Marshall@physics.ox.ac.uk
Telephone: 01865 (2)72099
Robert Hooke Building, room F47
my personal webpage (external)
  • About
  • Publications

Distinct sources of interannual subtropical and subpolar Atlantic overturning variability

Nature Geoscience Nature Research 14 (2021) 491-495

Authors:

yavor Kostov, helen Johnson, David Marshall, Patrick Heimbach, Gael Forget, Penny Holliday, Susan Lozier, Feili Li, Helen Pillar, Timothy Smith

Abstract:

The Atlantic meridional overturning circulation (AMOC) is pivotal for regional and global climate due to its key role in the uptake and redistribution of heat and carbon. Establishing the causes of historical variability in AMOC strength on different timescales can tell us how the circulation may respond to natural and anthropogenic changes at the ocean surface. However, understanding observed AMOC variability is challenging because the circulation is influenced by multiple factors that co-vary and whose overlapping impacts persist for years. Here we reconstruct and unambiguously attribute intermonthly and interannual AMOC variability at two observational arrays to the recent history of surface wind stress, temperature and salinity. We use a state-of-the-art technique that computes space- and time-varying sensitivity patterns of the AMOC strength with respect to multiple surface properties from a numerical ocean circulation model constrained by observations. While, on interannual timescales, AMOC variability at 26° N is overwhelmingly dominated by a linear response to local wind stress, overturning variability at subpolar latitudes is generated by the combined effects of wind stress and surface buoyancy anomalies. Our analysis provides a quantitative attribution of subpolar AMOC variability to temperature, salinity and wind anomalies at the ocean surface.
More details from the publisher
Details from ORA
More details

Demons in the North Atlantic: Variability of deep ocean ventilation

Geophysical Research Letters American Geophysical Union (AGU) (2021)

Authors:

Ga MacGilchrist, Helen L JOHNSON, C Lique, David P MARSHALL
More details from the publisher
Details from ORA
More details

Characteristics and variability of ocean ventilation in the high-latitude North Atlantic in an eddy-permitting ocean model

Copernicus Publications (2021)

Authors:

Helen L Johnson, Graeme MacGilchrist, David P Marshall, Camille Lique, Matthew Thomas, Laura Jackson, Richard Wood
More details from the publisher

An Idealised Model Study of Eddy Energetics in the Western Boundary ‘Graveyard’

Journal of Physical Oceanography American Meteorological Society (2021)

Authors:

Zhibin Yang, Xiaoming Zhai, David P Marshall, Guihua Wang

Abstract:

<jats:title>Abstract</jats:title><jats:p>Recent studies show that the western boundary acts as a ‘graveyard’ for westward-propagating ocean eddies. However, how the eddy energy incident on the western boundary is dissipated remains unclear. Here we investigate the energetics of eddy-western boundary interaction using an idealised MIT ocean circulation model with a spatially variable grid resolution. Four types of model experiments are conducted: (1) single eddy cases, (2) a sea of random eddies, (3) with a smooth topography and (4) with a rough topography. We find significant dissipation of incident eddy energy at the western boundary, regardless of whether the model topography at the western boundary is smooth or rough. However, in the presence of rough topography, not only the eddy energy dissipation rate is enhanced, but more importantly, the leading process for removing eddy energy in the model switches from bottom frictional drag as in the case of smooth topography to viscous dissipation in the ocean interior above the rough topography. Further analysis shows that the enhanced eddy energy dissipation in the experiment with rough topography is associated with greater anticyclonic-ageostrophic instability (AAI), possibly as a result of lee wave generation and non-propagating form drag effect.</jats:p>
More details from the publisher
Details from ORA
More details

The annual cycle of upper-ocean potential vorticity and its relationship to submesoscale instabilities

Journal of Physical Oceanography American Meteorological Society 51:2 (2021) 385-402

Authors:

Xiaolong Yu, Alberto Naveira Garabato, Adrian Martin, David Marshall

Abstract:

The evolution of upper-ocean potential vorticity (PV) over a full year in a typical midocean area of the northeast Atlantic is examined using submesoscale- and mesoscale-resolving hydrographic and velocity measurements from a mooring array. A PV budget framework is applied to quantitatively document the competing physical processes responsible for deepening and shoaling the mixed layer. The observations reveal a distinct seasonal cycle in upper-ocean PV, characterized by frequent occurrences of negative PV within deep (up to about 350 m) mixed layers from winter to mid-spring, and positive PV beneath shallow (mostly less than 50 m) mixed layers during the remainder of the year. The cumulative positive and negative subinertial changes in the mixed layer depth, which are largely unaccounted for by advective contributions, exceed the deepest mixed layer by one order of magnitude, suggesting that mixed layer depth is shaped by the competing effects of destratifying and restratifying processes. Deep mixed layers are attributed to persistent atmospheric cooling from winter to mid-spring, which triggers gravitational instability leading to mixed layer deepening. However, on shorter time scales of days, conditions favorable to symmetric instability often occur as winds intermittently align with transient frontal flows. The ensuing submesoscale frontal instabilities are found to fundamentally alter upper-ocean turbulent convection, and limit the deepening of the mixed layer in the winter-to-mid-spring period. These results emphasize the key role of submesoscale frontal instabilities in determining the seasonal evolution of the mixed layer in the open ocean.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet