Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

David Marshall

Professor of Physical Oceanography

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Physical oceanography
David.Marshall@physics.ox.ac.uk
Telephone: 01865 (2)72099
Robert Hooke Building, room F47
my personal webpage (external)
  • About
  • Publications

A geometric interpretation of Southern Ocean eddy form stress

Journal of Physical Oceanography American Meteorological Society 49 (2019) 2553-2570

Authors:

M Poulsen, M Jochum, J Maddison, David Marshall, R Nuterman

Abstract:

An interpretation of eddy form stress via the geometry described by the Eliassen-Palm flux tensor is explored. Complimentary to previous works on eddy Reynolds stress geometry, this study shows that eddy form stress is fully described by a vertical ellipse, whose size, shape and orientation with respect to the mean-flow shear determine the strength and direction of vertical momentum transfers. Following a recent proposal, this geometric framework is here used to form a Gent-McWilliams eddy transfer coefficient which depends on eddy energy and a non-dimensional geometric parameter α, bounded in magnitude by unity. α expresses the efficiency by which eddies exchange energy with baroclinic mean-flow via along-gradient eddy buoyancy flux - a flux equivalent to eddy form stress along mean buoyancy contours. An eddy-resolving ocean general circulation model is used to estimate the spatial structure of α in the Southern Ocean and assess its potential to form a basis for parameterization. α averages to a low but positive value of 0.043 within the Antarctic Circumpolar Current, consistent with an inefficient eddy field extracting energy from the mean-flow. It is found that the low eddy efficiency is mainly the result of that eddy buoyancy fluxes are weakly anisotropic on average. α is subject to pronounced vertical structure and is maximum at ∼ 3 km depth where eddy buoyancy fluxes tend to be directed most downgradient. Since α partly sets the eddy form stress in the Southern Ocean, a parameterization for α must reproduce its vertical structure to provide a faithful representation of vertical stress divergence and eddy forcing.
More details from the publisher
Details from ORA
More details

AMOC sensitivity to surface buoyancy fluxes: the role of air-sea feedback mechanisms

Climate Dynamics Springer 53 (2019) 4521-4537

Authors:

Yavor Kostov, Helen Johnson, David Marshall

Abstract:

We interrogate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to surface heat and freshwater fluxes over the Subpolar Gyre in an ocean general circulation model and its adjoint. Surface heat loss out of the Subpolar Gyre in the winter strengthens the AMOC at a lead time of approximately 6 months. However, the same surface heat flux anomaly in the summer leads to a delayed AMOC weakening that emerges at a lag of 8 months. Under a summer surface cooling perturbation, the AMOC progressively weakens up to a lag of approximately 80 months, and then the negative overturning anomaly persists for years. Compared with the sensitivity to surface heat fluxes, seasonality in the AMOC sensitivity to surface freshwater fluxes is less pronounced, and there is no sign reversal between the response to summer and winter perturbations. We explain the mechanisms behind the large seasonal differences in the AMOC sensitivity to surface heat fluxes and highlight the role of evaporation. Heat flux anomalies over the Subpolar Gyre trigger changes in the rate of evaporation and hence affect the salinity of the mixed layer. Surface cooling gives rise to freshening in the following months, whereas warming leads to salinification. Persistent buoyancy changes due to salinity responses counteract the impact of heat fluxes to a varying extent depending on the seasonal mixed layer depth. On the other hand, air-sea feedback mechanisms exert a positive feedback on the AMOC response to surface freshwater flux perturbations both in the summer and in the winter months.
More details from the publisher
Details from ORA
More details

A sea change in our view of overturning in the subpolar North Atlantic.

Science (New York, N.Y.) (2019)

Authors:

F Li, S Bacon, F Bahr, AS Bower, MF de Jong, L de Steur, B deYoung, J Fischer, SF Gary, BJW Greenan, NP Holliday, A Houk, L Houpert, ME Inall, WE Johns, HL Johnson, C Johnson, J Karstensen, G Koman, IA Le Bras, X Lin, N Mackay, DAVID Marshall, H Mercier, M Oltmanns, RS Pickart, AL Ramsey, D Rayner, F Straneo, V Thierry, DJ Torres, RG Williams, C Wilson, J Yang, I Yashayaev, J Zhao

Abstract:

To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.
More details from the publisher
Details from ORA
More details
More details

Impacts of Atmospheric Reanalysis Uncertainty on Atlantic Overturning Estimates at 25°N

Journal of Climate American Meteorological Society 31:21 (2018) 8719-8744

Authors:

Helen R Pillar, Helen L Johnson, David P Marshall, Patrick Heimbach, So Takao

Abstract:

Atmospheric reanalyses are commonly used to force numerical ocean models, but despite large discrepancies reported between different products, the impact of reanalysis uncertainty on the simulated ocean state is rarely assessed. In this study, the impact of uncertainty in surface fluxes of buoyancy and momentum on the modeled Atlantic meridional overturning at 25°N is quantified for the period January 1994–December 2011. By using an ocean-only climate model and its adjoint, the space and time origins of overturning uncertainty resulting from air–sea flux uncertainty are fully explored. Uncertainty in overturning induced by prior air–sea flux uncertainty can exceed 4 Sv (where 1 Sv ≡ 106 m3 s−1) within 15 yr, at times exceeding the amplitude of the ensemble-mean overturning anomaly. A key result is that, on average, uncertainty in the overturning at 25°N is dominated by uncertainty in the zonal wind at lags of up to 6.5 yr and by uncertainty in surface heat fluxes thereafter, with winter heat flux uncertainty over the Labrador Sea appearing to play a critically important role.
More details from the publisher
Details from ORA
More details

Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model

Journal of Physical Oceanography American Meteorological Society 48:10 (2018) 2363-2382

Authors:

Julian Mak, J Maddison, David Marshall, D Munday

Abstract:

The global stratification and circulation, and their sensitivities to changes in forcing, depend crucially on the representation of the mesoscale eddy field in a numerical ocean circulation model. Here, a geometrically informed and energetically constrained parameterization framework for mesoscale eddies — termed GEOMETRIC — is proposed and implemented in three-dimensional channel and sector models. The GEOMETRIC framework closes eddy buoyancy fluxes according to the standard Gent–McWilliams scheme, but with the eddy transfer coefficient constrained by the depth-integrated eddy energy field, provided through a prognostic eddy energy budget evolving with the mean state. It is found that coarse resolution models employing GEOMETRIC display broad agreement in the sensitivity of the circumpolar transport, meridional overturning circulation and depth-integrated eddy energy pattern to surface wind stress as compared with analogous reference calculations at eddy permitting resolutions. Notably, eddy saturation — the insensitivity of the time-mean circumpolar transport to changes in wind forcing — is found in the coarse resolution sector model. In contrast, differences in the sensitivity of the depth-integrated eddy energy are found in model calculations in the channel experiments that vary the eddy energy dissipation, attributed to the simple prognostic eddy energy equation employed. Further improvements to the GEOMETRIC framework require a shift in focus from how to close for eddy buoyancy fluxes to the representation of eddy energetics.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet