Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr James Matthews

Royal Society University Research Fellow

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Gamma-ray astronomy
james.matthews@physics.ox.ac.uk
Telephone: 01865(2)73299
Denys Wilkinson Building, room Undercroft
Website
  • About
  • Into the Cosmos
  • Publications

Fornax A, Centaurus A and other radio galaxies as sources of ultra-high energy cosmic rays

Monthly Notices of the Royal Astronomical Society: Letters Blackwell Publishing

Authors:

JH Matthews, AR Bell, KM Blundell, AT Araudo

Abstract:

The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starbust galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Stochastic transport of high-energy particles through a turbulent plasma

Authors:

LE Chen, AFA Bott, P Tzeferacos, A Rigby, A Bell, R Bingham, C Graziani, J Katz, M Koenig, CK Li, R Petrasso, H-S Park, JS Ross, D Ryu, D Ryutov, TG White, B Reville, J Matthews, J Meinecke, F Miniati, EG Zweibel, Subir Sarkar, AA Schekochihin, DQ Lamb, DH Froula, G Gregori

Abstract:

The interplay between charged particles and turbulent magnetic fields is crucial to understanding how cosmic rays propagate through space. A key parameter which controls this interplay is the ratio of the particle gyroradius to the correlation length of the magnetic turbulence. For the vast majority of cosmic rays detected at the Earth, this parameter is small, and the particles are well confined by the Galactic magnetic field. But for cosmic rays more energetic than about 30 EeV, this parameter is large. These highest energy particles are not confined to the Milky Way and are presumed to be extragalactic in origin. Identifying their sources requires understanding how they are deflected by the intergalactic magnetic field, which appears to be weak, turbulent with an unknown correlation length, and possibly spatially intermittent. This is particularly relevant given the recent detection by the Pierre Auger Observatory of a significant dipole anisotropy in the arrival directions of cosmic rays of energy above 8 EeV. Here we report measurements of energetic-particle propagation through a random magnetic field in a laser-produced plasma. We characterize the diffusive transport of these particles and recover experimentally pitch-angle scattering measurements and extrapolate to find their mean free path and the associated diffusion coefficient, which show scaling-relations consistent with theoretical studies. This experiment validates these theoretical tools for analyzing the propagation of ultra-high energy cosmic rays through the intergalactic medium.
More details from the publisher
Details from ArXiV
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet