Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Lance Miller

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Euclid
Lance.Miller@physics.ox.ac.uk
  • About
  • Publications

CODEX weak lensing: Concentration of galaxy clusters at z ~ 0.5

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:1 (2017) 1092-1116

Authors:

Nathália Cibirka, Eduardo S Cypriano, Fabrice Brimioulle, Daniel Gruen, Thomas Erben, Ludovic van Waerbeke, Lance Miller, Alexis Finoguenov, Charles Kirkpatrick, J Patrick Henry, Eli Rykoff, Eduardo Rozo, Renato A Dupke, Jean-Paul Kneib, Huanyuan Shan, Patricia Spinelli

Abstract:

We present a stacked weak lensing analysis of 27 richness selected galaxy clusters at $0.40 \leqslant z \leqslant 0.62$ in the CODEX survey. The fields were observed in 5 bands with the CFHT. We measure the stacked surface mass density profile with a $14\sigma$ significance in the radial range $0.1 < R\ Mpc\ h^{-1} < 2.5$. The profile is well described by the halo model, with the main halo term following an NFW profile and including the off-centring effect. We select the background sample using a conservative colour-magnitude method to reduce the potential systematic errors and contamination by cluster member galaxies. We perform a Bayesian analysis for the stacked profile and constrain the best-fit NFW parameters $M_{200c} = 6.6^{+1.0}_{-0.8} \times 10^{14} h^{-1} M_{\odot}$ and $c_{200c} = 3.7^{+0.7}_{-0.6}$. The off-centring effect was modelled based on previous observational results found for redMaPPer SDSS clusters. Our constraints on $M_{200c}$ and $c_{200c}$ allow us to investigate the consistency with numerical predictions and select a concentration-mass relation to describe the high richness CODEX sample. Comparing our best-fit values for $M_{200c}$ and $c_{200c}$ with other observational surveys at different redshifts, we find no evidence for evolution in the concentration-mass relation, though it could be mitigated by particular selection functions. Similar to previous studies investigating the X-ray luminosity-mass relation, our data suggests a lower evolution than expected from self-similarity.
More details from the publisher
Details from ORA
Details from ArXiV

Measuring light echoes in NGC 4051

Monthly Notices of the Royal Astronomical Society Oxford University Press 467:4 (2017) 3924-3933

Authors:

TJ Turner, Lance Miller, JN Reeves, V Braito

Abstract:

Five archived X-ray observations of NGC 4051, taken using the NuSTAR observatory, have been analysed, revealing lags between flux variations in bands covering a wide range of X-ray photon energy. In all pairs of bands compared, the harder band consistently lags the softer band by at least 1000s, at temporal frequencies ~5E-5 Hz. In addition, soft-band lags up to 400s are measured at frequencies ~2E-4 Hz. Light echos from an excess of soft band emission in the inner accretion disk cannot explain the lags in these data, as they are seen in cross-correlations with energy bands where the softer band is expected to have no contribution from reflection. The basic properties of the time delays have been parameterised by fitting a top hat response function that varies with photon energy, taking fully into account the covariance between measured time lag values. The low-frequency hard-band lags and the transition to soft-band lags are consistent with time lags arising as reverberation delays from circumnuclear scattering of X-rays, although greater model complexity is required to explain the entire spectrum of lags. The scattered fraction increases with increasing photon energy as expected, and the scattered fraction is high, indicating the reprocessor to have a global covering fraction ~50% around the continuum source. Circumnuclear material, possibly associated with a disk wind at a few hundred gravitational radii from the primary X-ray source, may provide suitable reprocessing.
More details from the publisher
Details from ORA
Details from ArXiV

Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press (2017)

Authors:

Nora E Chisari, Nick Koukoufilippas, Abhinav Jindal, Sébastien Peirani, Ricarda S Beckmann, Sandrine Codis, Julien EG Devriendt, Lance Miller, Yohan Dubois, Clotilde MC Laigle, Adrianne Slyz, Christophe Pichon

Abstract:

Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter halos and to the large-scale structure. In this paper, we characterise galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range $0
Details from ORA
More details from the publisher
Details from ArXiV
More details

Lensing is low: Cosmology, galaxy formation, or new physics?

Monthly Notices of the Royal Astronomical Society Oxford University Press 467:3 (2017) 3024-3047

Authors:

Alexie Leauthaud, Shun Saito, Stefan Hilbert, Alexandre Barreira, Surhud More, Martin White, Shadab Alam, Peter Behroozi, Kevin Bundy, Jean Coupon, Thomas Erben, Catherine Heymans, Hendrik Hildebrandt, Rachel Mandelbaum, Lance Miller, Bruno Moraes, Maria ES Pereira, Sergio A Rodriguez-Torres, Fabian Schmidt, Huan-Yuan Shan, Matteo Viel, Francesco Villaescusa-Navarro

Abstract:

We present high signal-to-noise galaxy-galaxy lensing measurements of the BOSS CMASS sample using 250 square degrees of weak lensing data from CFHTLenS and CS82. We compare this signal with predictions from mock catalogs trained to match observables including the stellar mass function and the projected and two dimensional clustering of CMASS. We show that the clustering of CMASS, together with standard models of the galaxy-halo connection, robustly predicts a lensing signal that is 20-40% larger than observed. Detailed tests show that our results are robust to a variety of systematic effects. Lowering the value of $S_{\rm 8}=\sigma_{\rm 8} \sqrt{\Omega_{\rm m}/0.3}$ compared to Planck2015 reconciles the lensing with clustering. However, given the scale of our measurement ($r<10$ $h^{-1}$ Mpc), other effects may also be at play and need to be taken into consideration. We explore the impact of baryon physics, assembly bias, massive neutrinos, and modifications to general relativity on $\Delta\Sigma$ and show that several of these effects may be non-negligible given the precision of our measurement. Disentangling cosmological effects from the details of the galaxy-halo connection, the effects of baryons, and massive neutrinos, is the next challenge facing joint lensing and clustering analyses. This is especially true in the context of large galaxy samples from Baryon Acoustic Oscillation surveys with precise measurements but complex selection functions.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

RCSLenS: the Red Cluster Sequence Lensing Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 463:1 (2016) 635-654

Authors:

H Hildebrandt, A Choi, C Heymans, C Blake, T Erben, Lance Miller, R Nakajima, L van Waerbeke, M Viola, A Buddendiek, J Harnois-Déraps, A Hojjati, B Joachimi, S Joudaki, TD Kitching, C Wolf, S Gwyn, N Johnson, K Kuijken, Z Sheikhbahaee, A Tudorica, HKC Yee

Abstract:

We present the Red-sequence Cluster Lensing Survey (RCSLenS), an application of the methods developed for the Canada France Hawaii Telescope Lensing Survey (CFHTLenS) to the ~785deg$^2$, multi-band imaging data of the Red-sequence Cluster Survey 2 (RCS2). This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7deg$^2$ and down to a magnitude limit of r~24.5 is 8.1 galaxies per arcmin$^2$ (weighted: 5.5 arcmin$^{-2}$) distributed over 14 patches on the sky. Photometric redshifts based on 4-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg$^2$ We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through CADC at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet