Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Lance Miller

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Euclid
Lance.Miller@physics.ox.ac.uk
  • About
  • Publications

KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys

Monthly Notices of the Royal Astronomical Society Oxford University Press 477:4 (2018) 4285-4307

Authors:

A Amon, C Heymans, D Klaes, T Erben, C Blake, H Hildebrandt, H Hoekstra, K Kuijken, Lance Miller, CB Morrison, A Choi, JTA De Jong, K Glazebrook, N Irisarri, B Joachimi, Shahab Joudaki, A Kannawadi, C Lidman, N Napolitano, D Parkinson, P Schneider, E Van Uitert, M Viola, C Wolf

Abstract:

We present a weak gravitational lensing analysis of 815 deg2of i-band imaging from the Kilo-Degree Survey (KiDS-i-800). In contrast to the deep r-band observations, which take priority during excellent seeing conditions and form the primary KiDS data set (KiDS-r-450), the complementary yet shallower KiDS-i-800 spans a wide range of observing conditions. The overlapping KiDS-i-800 and KiDS-r-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis we introduce two new 'null' tests. The 'nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-i-800 and KiDS-r-450 shear measurements agree at the level of 1 ± 4 per cent.We use five galaxy lens samples to determine a 'nulled' galaxy-galaxy lensing signal from the full KiDS-i-800 and KiDS-r-450 surveys and find that the measurements agree to 7 ± 5 per cent when the KiDS-i-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.
More details from the publisher
Details from ORA
More details
Details from ArXiV

KiDS plus GAMA: Cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering

Monthly Notices of the Royal Astronomical Society Oxford University Press 476:4 (2018) 4662-4689

Authors:

E Van Uitert, B Joachimi, Shahab Joudaki, A Amon, C Heymans, F Koehlinger, M Asgari, C Blake, A Choi, T Erben, DJ Farrow, J Harnois-Deraps, H Hildebrandt, H Hoekstra, TD Kitching, D Klaes, K Kuijken, Julian Merten, Lance Miller, R Nakajima, P Schneider, E Valentijn, M Viola

Abstract:

We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in~450 deg2of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S8≡ σ8√ Ωm/0.3 = 0.800-0.027+0.029, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8with an increase of 28 per cent in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Radio weak lensing shear measurement in the visibility domain - II. Source extraction

Monthly Notices of the Royal Astronomical Society Oxford University Press 476:2 (2018) 2053-2062

Authors:

M Rivi, Lance Miller

Abstract:

This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper we focused on the development and testing of the method for the simple case of individual galaxies located at the phase centre, and proposed to extend it to the realistic case of many sources in the field of view by extracting visibilities of each source with a faceting technique, taking into account the contamination from the other sources. In this second paper we present a detailed algorithm for source extraction in the visibility domain and show its effectiveness as a function of the source number density by running simulations of SKA1-MID observations in the band 950-1150 MHz and comparing original and measured values of galaxies' ellipticities. Shear measurements from a realistic population of 10^4 galaxies randomly located in a field of view of 1 deg^2 (i.e. the source density expected for the current radio weak lensing survey proposal with SKA1) are also performed. At SNR >= 10, the multiplicative bias is only a factor 1.5 worse than what found when analysing isolated sources, and is still comparable to the bias values reported for similar measurement methods at optical wavelengths. The additive bias is unchanged from the case of isolated sources, but is significantly larger than typically found in optical surveys. This bias depends on the shape of the Point Spread Function (PSF) and we suggest that a uv-plane weighting scheme to produce a more isotropic PSF could reduce and control additive bias.
More details from the publisher
Details from ORA
Details from ArXiV

Calibration of weak-lensing shear in the Kilo-Degree Survey

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 467:2 (2017) 1627-1651

Authors:

IF Conti, R Herbonnet, H Hoekstra, J Merten, L Miller, M Viola
More details from the publisher
Details from ORA
More details
Details from ArXiV

KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering

Monthly Notices of the Royal Astronomical Society Oxford University Press 474:4 (2017) 4894-4924

Authors:

Shahab Joudaki, C Blake, A Johnson, A Amon, M Asgari, A Choi, T Erben, K Glazebrook, J Harnois-Déraps, C Heymans, H Hildebrandt, H Hoekstra, D Klaes, K Kuijken, C Lidman, A Mead, Lance Miller, D Parkinson, GB Poole, P Schneider, M Viola, C Wolf

Abstract:

We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg$^2$ of imaging data by the Kilo Degree Survey (KiDS) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of $N$-body simulations. We methodically analyze different combinations of the observables, finding that galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude (by 30%, positive at $3.5\sigma$ in the fiducial data analysis), while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction (e.g. factor of two stronger matter density constraint in the fiducial analysis). The fully combined constraint on $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3} = 0.742 \pm 0.035$, which is an improvement by 20% compared to KiDS alone, corresponds to a $2.6\sigma$ discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favored in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy, and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the $S_8$ constraint in the extended cosmology compared to KiDS alone.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet