Euclid preparation: VI. Verifying the performance of cosmic shear experiments
Astronomy and Astrophysics EDP Sciences 635:March 2020 (2020) A139
Abstract:
Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. We present an end-to-end approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. Residual biases are propagated through a pipeline from galaxy properties (one end) through to cosmic shear power spectra and cosmological parameter estimates (the other end), to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. We quantify the impact of an imperfect correction for charge transfer inefficiency (CTI) and modelling uncertainties of the point spread function (PSF) for Euclid, and find that the biases introduced can be corrected to acceptable levels.Consistent cosmic shear in the face of systematics: a B-mode analysis of KiDS-450, DES-SV and CFHTLenS
Astronomy and Astrophysics: a European journal EDP Sciences (2019)
Abstract:
We analyse three public cosmic shear surveys; the Kilo-Degree Survey (KiDS-450), the Dark Energy Survey (DES-SV) and the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). Adopting the COSEBIs statistic to cleanly and completely separate the lensing E-modes from the non-lensing B-modes, we detect B-modes in KiDS-450 and CFHTLenS at the level of about 2.7 $\sigma$. For DES- SV we detect B-modes at the level of 2.8 $\sigma$ in a non-tomographic analysis, increasing to a 5.5 $\sigma$ B-mode detection in a tomographic analysis. In order to understand the origin of these detected B-modes we measure the B-mode signature of a range of different simulated systematics including PSF leakage, random but correlated PSF modelling errors, camera-based additive shear bias and photometric redshift selection bias. We show that any correlation between photometric-noise and the relative orientation of the galaxy to the point-spread-function leads to an ellipticity selection bias in tomographic analyses. This work therefore introduces a new systematic for future lensing surveys to consider. We find that the B-modes in DES-SV appear similar to a superposition of the B-mode signatures from all of the systematics simulated. The KiDS-450 and CFHTLenS B-mode measurements show features that are consistent with a repeating additive shear bias.Towards emulating cosmic shear data: revisiting the calibration of the shear measurements for the Kilo-Degree Survey
Astronomy and Astrophysics EDP Sciences 624 (2019) A92
Abstract:
Exploiting the full statistical power of future cosmic shear surveys will necessitate improvements to the accuracy with which the gravitational lensing signal is measured. We present a framework for calibrating shear with image simulations that demonstrates the importance of including realistic correlations between galaxy morphology, size and more importantly, photometric redshifts. This realism is essential so that selection and shape measurement biases can be calibrated accurately for a tomographic cosmic shear analysis. We emulate Kilo-Degree Survey (KiDS) observations of the COSMOS field using morphological information from {\it Hubble} Space Telescope imaging, faithfully reproducing the measured galaxy properties from KiDS observations of the same field. We calibrate our shear measurements from lensfit, and find through a range of sensitivity tests that lensfit is robust and unbiased within the allowed 2 per cent tolerance of our study. Our results show that the calibration has to be performed by selecting the tomographic samples in the simulations, consistent with the actual cosmic shear analysis, because the joint distributions of galaxy properties are found to vary with redshift. Ignoring this redshift variation could result in misestimating the shear bias by an amount that exceeds the allowed tolerance. To improve the calibration for future cosmic shear analyses, it will be essential to also correctly account for the measurement of photometric redshifts, which requires simulating multi-band observations.A rapid occultation event in NGC 3227
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 481:2 (2018) 2470-2478
Weak-lensing study in VOICE survey – I. Shear measurement
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 479:3 (2018) 3858-3872