Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Francesco Miniati

Researcher in Computational Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum high energy density physics
francesco.miniati@physics.ox.ac.uk
Clarendon Laboratory, room Simon room
  • About
  • Publications

Learning heat transport kernels using a nonlocal heat transport theory-informed neural network

Physical Review Research American Physical Society (APS) 7:4 (2025) L042017

Authors:

Mufei Luo, Charles Heaton, Yizhen Wang, Daniel Plummer, Mila Fitzgerald, Francesco Miniati, Sam M Vinko, Gianluca Gregori

Abstract:

<jats:p>We present a data-driven framework for the modeling of nonlocal heat transport in plasmas using a nonlocal theory-informed neural network trained on kinetic particle-in-cell simulations that span both local and nonlocal regimes. The model learns spatio-temporal heat flux kernels directly from simulation data, capturing dynamic transport behaviors beyond the reach of classical formulations. Unlike time-independent kernel models such as Luciani-Mora-Virmont and Schurtz-Nicolaï-Busquet models, our approach yields physically grounded, time-evolving kernels that adapt to varying plasma conditions. The resulting predictions show strong agreement with kinetic benchmarks across regimes. This offers a promising direction for data-driven modeling of nonlocal heat transport and contributes to a deeper understanding of plasma dynamics.</jats:p>
More details from the publisher
More details

Numerical simulations of laser-driven experiments of ion acceleration in stochastic magnetic fields

Physics of Plasmas American Institute of Physics 31:12 (2024) 122105

Authors:

Kassie Moczulski, Thomas Campbell, Charles Arrowsmith, Archie Bott, Subir Sarkar, Alexander Schekochihin, Gianluca Gregori

Abstract:

We present numerical simulations used to interpret laser-driven plasma experiments at the GSI Helmholtz Centre for Heavy Ion Research. The mechanisms by which non-thermal particles are accelerated, in astrophysical environments e.g., the solar wind, supernova remnants, and gamma ray bursts, is a topic of intense study. When shocks are present the primary acceleration mechanism is believed to be first-order Fermi, which accelerates particles as they cross a shock. Second-order Fermi acceleration can also contribute, utilizing magnetic mirrors for particle energization. Despite this mechanism being less efficient, the ubiquity of magnetized turbulence in the universe necessitates its consideration. Another acceleration mechanism is the lower-hybrid drift instability, arising from gradients of both density and magnetic field, which produce lower-hybrid waves with an electric field which energizes particles as they cross these waves. With the combination of high-powered laser systems and particle accelerators it is possible to study the mechanisms behind cosmic-ray acceleration in the laboratory. In this work, we combine experimental results and high-fidelity threedimensional simulations to estimate the efficiency of ion acceleration in a weakly magnetized interaction region. We validate the FLASH MHD code with experimental results and use OSIRIS particle-in-cell (PIC) code to verify the initial formation of the interaction region, showing good agreement between codes and experimental results. We find that the plasma conditions in the experiment are conducive to the lower-hybrid drift instability, yielding an increase in energy ∆E of ∼ 264 keV for 242 MeV calcium ions.
More details from the publisher
Details from ORA
More details

Laboratory realization of relativistic pair-plasma beams

Nature Communications Springer Nature 15:1 (2024) 5029

Authors:

CD Arrowsmith, P Simon, PJ Bilbao, Archie FA Bott, S Burger, H Chen, FD Cruz, T Davenne, I Efthymiopoulos, DH Froula, A Goillot, JT Gudmundsson, D Haberberger, Jonathan WD Halliday, Thomas Hodge, Brian T Huffman, Sam Iaquinta, Francesco Miniati, B Reville, Subir Sarkar, Alexander Schekochihin, LO Silva, R Simpson, Vasiliki Stergiou, RMGM Trines, N Charitonidis, R Bingham, Gianluca Gregori

Abstract:

Relativistic electron-positron plasmas are ubiquitous in extreme astrophysical environments such as black-hole and neutron-star magnetospheres, where accretion-powered jets and pulsar winds are expected to be enriched with electron-positron pairs. Their role in the dynamics of such environments is in many cases believed to be fundamental, but their behavior differs significantly from typical electron-ion plasmas due to the matter-antimatter symmetry of the charged components. So far, our experimental inability to produce large yields of positrons in quasi-neutral beams has restricted the understanding of electron-positron pair plasmas to simple numerical and analytical studies, which are rather limited. We present the first experimental results confirming the generation of high-density, quasi-neutral, relativistic electron-positron pair beams using the 440 GeV/c beam at CERN’s Super Proton Synchrotron (SPS) accelerator. Monte Carlo simulations agree well with the experimental data and show that the characteristic scales necessary for collective plasma behavior, such as the Debye length and the collisionless skin depth, are exceeded by the measured size of the produced pair beams. Our work opens up the possibility of directly probing the microphysics of pair plasmas beyond quasi-linear evolution into regimes that are challenging to simulate or measure via astronomical observations.
More details from the publisher
Details from ORA
More details
More details

Laboratory realization of relativistic pair-plasma beams

(2024)

Authors:

Charles Arrowsmith, Pascal Simon, Pablo Bilbao, Archie Bott, Stephane Burger, Hui Chen, Filipe Cruz, Tristan Davenne, Ilias Efthymiopoulos, Dustin Froula, Alice Marie Goillot, Jon Tomas Gudmundsson, Dan Haberberger, Jonathan Halliday, Thomas Hodge, Brian Huffman, Sam Iaquinta, Francesco Miniati, Brian Reville, Subir Sarkar, Alexander Schekochihin, Luis Silva, Simpson, Vasiliki Stergiou, Raoul Trines, Thibault Vieu, Nikolaos Charitonidis, Robert Bingham, Gianluca Gregori
More details from the publisher
Details from ORA
Details from ArXiV

Time-resolved turbulent dynamo in a laser plasma

Proceedings of the National Academy of Sciences National Academy of Sciences 118:11 (2021) e2015729118

Authors:

Afa Bott, P Tzeferacos, L Chen, Charlotte Palmer, A Rigby, Anthony Bell, R Bingham, A Birkel, C Graziani, Dh Froula, J Katz, M Koenig, Mw Kunz, Ck Li, J Meinecke, Francesco Miniati, R Petrasso, H-S Park, Ba Remington, B Reville, Js Ross, D Ryu, D Ryutov, F Séguin, Tg White, AA Schekochihin, Dq Lamb, G Gregori

Abstract:

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm<1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm≳1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm≳1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet