Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields
Astrophysical Journal American Astronomical Society 892:2 (2020) 114
Abstract:
Identifying the sources of the highest energy cosmic rays requires understanding how they are deflected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measurements of energetic charged-particle propagation through a laser-produced magnetized plasma with these properties. We characterize the diffusive transport of the particles experimentally. The results show that the transport is diffusive and that, for the regime of interest for the highest-energy cosmic rays, the diffusion coefficient is unaffected by the spatial intermittency of the magnetic field.Supersonic plasma turbulence in the laboratory
Nature Communications Nature Research 10 (2019) 1758
Maser radiation from collisionless shocks: application to astrophysical jets
High Power Laser Science and Engineering Cambridge University Press 7 (2019) e17
Abstract:
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089 (2000); Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017)].Nonlinear dynamo in the intracluster medium
Classical and Quantum Gravity IOP Publishing 35:10 (2018) 104001
Electron acceleration by wave turbulence in a magnetized plasma
Nature Physics Springer Nature 14 (2018) 475-479