Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Francesco Miniati

Researcher in Computational Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum high energy density physics
francesco.miniati@physics.ox.ac.uk
Clarendon Laboratory, room Simon room
  • About
  • Publications

THE X-RAY ZURICH ENVIRONMENTAL STUDY (X-ZENS). II. X-RAY OBSERVATIONS OF THE DIFFUSE INTRAGROUP MEDIUM IN GALAXY GROUPS

The Astrophysical Journal American Astronomical Society 819:1 (2016) 26

Authors:

Francesco Miniati, Alexis Finoguenov, John D Silverman, Marcella Carollo, Anna Cibinel, Simon J Lilly, Kevin Schawinski
More details from the publisher
Details from ArXiV

ZENS. IV. SIMILAR MORPHOLOGICAL CHANGES ASSOCIATED WITH MASS QUENCHING AND ENVIRONMENT QUENCHING AND THE RELATIVE IMPORTANCE OF BULGE GROWTH VERSUS THE FADING OF DISKS*

The Astrophysical Journal American Astronomical Society 818:2 (2016) 180

Authors:

CM Carollo, A Cibinel, SJ Lilly, A Pipino, S Bonoli, A Finoguenov, F Miniati, P Norberg, JD Silverman
More details from the publisher
More details

TURBULENT AMPLIFICATION AND STRUCTURE OF THE INTRACLUSTER MAGNETIC FIELD

The Astrophysical Journal American Astronomical Society 817:2 (2016) 127

Authors:

Andrey Beresnyak, Francesco Miniati
More details from the publisher

The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

Physics Reports Elsevier 601 (2015) 1-34

Authors:

Gianluca Gregori, Brian Reville, Francesco Miniati

Abstract:

The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields at cosmological shock waves. These arise during the collapse of protogalactic structures, resulting in the formation of high Mach number shocks in the intergalactic medium, which act as sources of vorticity in protogalaxies. The standard model for the origin of magnetic fields is via baroclinic generation from the resulting misaligned pressure and temperature gradients (the so-called Biermann battery process). While both experiment and numerical simulation have confirmed the occurrence of this mechanism at shocks, reconciling the resulting weak fields with present day observations is an un-solved problem, although it is generally accepted that turbulent motions of the weakly magnetised plasma plays a key role. Bridging the vast scale differences is a challenge both numerically and experimentally. A summary of novel laboratory experiments aimed at investigating additional processes that may shed light on these and other processes, such us turbulent amplification, resistive and collision-less plasma instabilities will be discussed in this review, particularly in relation to experiments using high power laser systems. The connection between laboratory shock waves and additional mechanisms, such as diffusive shock acceleration will be discussed. Finally, we will summarize the impact of laboratory investigation in furthering our understanding of plasma physics on super-galactic scales.
More details from the publisher
Details from ORA
More details

Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences 112:27 (2015) 8211-8215

Authors:

Jena Meinecke, Petros Tzeferacos, Anthony R Bell, Robert Bingham, Rob J Clarke, Eugene M Churazov, Robert Crowston, Hugo Doyle, R Paul Drake, Rob Heathcote, Michel Koenig, Yasuhiro Kuramitsu, Carolyn C Kuranz, Daniel Lee, Michael J MacDonald, Chris D Murphy, Margaret M Notley, Hye-Sook Park, Alexander Pelka, Alessandra Ravasio, Brian Reville, Youichi Sakawa, Willow C Wan, Nigel C Woolsey, Roman Yurchak

Abstract:

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet