First results from the DEAP-3600 dark matter search with argon at SNOLAB
Physical Review Letters American Physical Society 121 (2018) 071801
Abstract:
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 tonne-days) of data taken with the nearly full detector during the initial filling phase demonstrates the detector performance and the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage $<1.2\times 10^{-7}$ (90% C.L.) between 16 and 33 keV$_{ee}$. No candidate signal events are observed, which results in the leading limit on WIMP-nucleon spin-independent cross section on argon, $<1.2\times 10^{-44}$ cm$^2$ for a 100 GeV/c$^2$ WIMP mass (90% C.L.).A method for characterizing after-pulsing and dark noise of PMTs and SiPMs
Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 875 (2017) 87-91
Abstract:
Photo-multiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) are detectors sensitive to single photons that are widely used for the detection of scintillation and Cerenkov light in subatomic physics and medical imaging. This paper presents a method for characterizing two of the main noise sources that PMTs and SiPMs share: dark noise and correlated noise (after-pulsing). The proposed method allows for a model-independent measurement of the after-pulsing timing distribution and dark noise rate.Search for neutron-antineutron oscillations at the Sudbury Neutrino Observatory
Physical Review D American Physical Society (APS) 96:9 (2017) 092005
Can tonne-scale direct detection experiments discover nuclear dark matter?
Journal of Cosmology and Astroparticle Physics 2017:10 (2017)
Abstract:
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon
Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 867 (2017) 204-208