Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Adam Nahum

Academic Visitor

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
  • About
  • Publications

Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory

PRX Quantum American Physical Society 2:1 (2021) 10352

Authors:

Adam Nahum, Sthitadhi Roy, Brian Skinner, Jonathan Ruhman

Abstract:

A quantum many-body system whose dynamics includes local measurements at a nonzero rate can be in distinct dynamical phases, with differing entanglement properties. We introduce theoretical approaches to measurement-induced phase transitions (MPTs) and also to entanglement transitions in random tensor networks. Many of our results are for “all-to-all” quantum circuits with unitaries and measurements, in which any qubit can couple to any other, and related settings where some of the complications of low-dimensional models are reduced. We also propose field-theory descriptions for spatially local systems of any finite dimensionality. To build intuition, we first solve the simplest “minimal cut” toy model for entanglement dynamics in all-to-all circuits, finding scaling forms and exponents within this approximation. We then show that certain all-to-all measurement circuits allow exact results by exploiting local treelike structure in the circuit geometry. For this reason, we make a detour to give general universal results for entanglement phase transitions in a class of random tree tensor networks with bond dimension 2, making a connection with the classical theory of directed polymers on a tree. We then compare these results with numerics in all-to-all circuits, both for the MPT and for the simpler “forced-measurement phase transition” (FMPT). We characterize the two different phases in all-to-all circuits using observables that are sensitive to the amount of information that is propagated between the initial and final time. We demonstrate signatures of the two phases that can be understood from simple models. Finally we propose Landau-Ginsburg-Wilson-like field theories for the measurement phase transition, the forced-measurement phase transition, and for entanglement transitions in random tensor networks. This analysis shows a surprising difference between the measurement phase transition and the other cases. We discuss variants of the measurement problem with additional structure (for example free-fermion structure), and questions for the future.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Self-dual criticality in three-dimensional $\mathbb{Z}_2$ gauge theory with matter

(2020)

Authors:

Andrés M Somoza, Pablo Serna, Adam Nahum
More details from the publisher
Details from ArXiV

Note on Wess-Zumino-Witten models and quasiuniversality in 2+1 dimensions

Physical Review B American Physical Society (APS) 102:20 (2020) 201116
More details from the publisher

Entanglement Membrane in Chaotic Many-Body Systems

Physical Review X American Physical Society (APS) 10:3 (2020) 031066

Authors:

Tianci Zhou, Adam Nahum
More details from the publisher

Quantum criticality of loops with topologically constrained dynamics

Physical Review Research American Physical Society (APS) 2:3 (2020) 033051

Authors:

Zhehao Dai, Adam Nahum
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet