Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Adam Nahum

Academic Visitor

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
  • About
  • Publications

Dynamics of entanglement and transport in one-dimensional systems with quenched randomness

Physical review B: Condensed matter and materials physics American Physical Society 98:3 (2018) 035118

Authors:

Adam Nahum, J Ruhman, DA Huse

Abstract:

Quenched randomness can have a dramatic effect on the dynamics of isolated 1D quantum many-body systems, even for systems that thermalize. This is because transport, entanglement, and operator spreading can be hindered by “Griffiths” rare regions, which locally resemble the many-body-localized phase and thus act as weak links. We propose coarse-grained models for entanglement growth and for the spreading of quantum operators in the presence of such weak links. We also examine entanglement growth across a single weak link numerically. We show that these weak links have a stronger effect on entanglement growth than previously assumed: entanglement growth is subballistic whenever such weak links have a power-law probability distribution at low couplings, i.e., throughout the entire thermal Griffiths phase. We argue that the probability distribution of the entanglement entropy across a cut can be understood from a simple picture in terms of a classical surface growth model. We also discuss spreading of operators and conserved quantities. Surprisingly, the four length scales associated with (i) production of entanglement, (ii) spreading of conserved quantities, (iii) spreading of operators, and (iv) the width of the “front” of a spreading operator, are characterized by dynamical exponents that in general are all distinct. Our numerical analysis of entanglement growth between weakly coupled systems may be of independent interest.
More details from the publisher
Details from ORA
More details

Emergence and spontaneous breaking of approximate O(4) symmetry at a weakly first-order deconfined phase transition

(2018)

Authors:

Pablo Serna, Adam Nahum
More details from the publisher
Details from ArXiV

Emergent statistical mechanics of entanglement in random unitary circuits

(2018)

Authors:

Tianci Zhou, Adam Nahum
More details from the publisher
Details from ArXiV

Operator spreading in random unitary circuits

Physical Review X American Physical Society 8:2 (2018) 021014

Authors:

Adam Nahum, S Vijay, J Haah

Abstract:

Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1+1D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1+1D, we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1+1D, the “front” of the OTOC broadens diffusively, with a width scaling in time as t1/2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1/3 in 2+1D and as t0.240 in 3+1D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2+1D. We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2+1D, our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1+1D, we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be performed exactly. We also use this mapping to give exact results for entanglement growth in 1+1D circuits.
More details from the publisher
Details from ORA
More details

Emergent SO(5) symmetry at the columnar ordering transition in the classical cubic dimer model

(2018)

Authors:

GJ Sreejith, Stephen Powell, Adam Nahum
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet