Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Relativistic intensity laser interactions with low-density plasmas

Journal of Physics: Conference Series IOP Publishing 688:1 (2016) 012126-012126

Authors:

L Willingale, PM Nilson, C Zulick, H Chen, RS Craxton, J Cobble, A Maksimchuk, Peter Norreys, TC Sangster, RHH Scott, C Stoeckl

Abstract:

© Published under licence by IOP Publishing Ltd. We perform relativistic-intensity laser experiments using the Omega EP laser to investigate channeling phenomena and particle acceleration in underdense plasmas. A fundamental understanding of these processes is of importance to the hole-boring fast ignition scheme for inertial confinement fusion. Proton probing was used to image the electromagnetic fields formed as the Omega EP laser pulse generated a channel through underdense plasma. Filamentation of the channel was observed, followed by self-correction into a single channel. The channel radius as a function of time was found to be in reasonable agreement with momentum- conserving snowplough models.
More details from the publisher
Details from ORA

Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

(2016)

Authors:

J Vieira, RMGM Trines, EP Alves, RA Fonseca, JT Mendonça, R Bingham, P Norreys, LO Silva
More details from the publisher

Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

Nature Communications Nature Publishing 7:1 (2016) 10371

Authors:

J Vieira, RMGM Trines, EP Alves, RA Fonseca, JT Mendonça, R Bingham, Peter Norreys, LO Silva

Abstract:

Twisted Laguerre–Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser–matter interactions. Here we show theoretically and with ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high–energy-density science, compact plasma-based accelerators and light sources.
More details from the publisher
Details from ORA
More details
More details

Path to AWAKE: Evolution of the concept

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 829 (2016) 3-16

Authors:

A Caldwell, E Adli, L Amorim, R Apsimon, T Argyropoulos, R Assmann, A-M Bachmann, E Batsch, J Bauche, VKB Olsen, M Bernardini, R Bingham, B Biskup, T Bohl, C Bracco, PN Burrows, G Burt, B Buttenschoen, A Butterworth, M Cascella, S Chattopadhyay, E Chevallay, S Cipiccia, H Damerau, L Deacon, R Dirksen, S Doebert, U Dorda, E Eisen, J Farmer, S Fartoukh, V Fedosseev, E Feldbaumer, R Fiorito, R Fonseca, F Friebel, G Geschonke, B Goddard, AA Gorn, O Grulke, E Gschwendtner, J Hansen, C Hessler, S Hillenbrand, W Hofle, J Holloway, C Huang, M Huether, D Jaroszynski, L Jensen, S Jolly, A Joulaei, M Kasim, F Keeble, R Kersevan, N Kumar, Y Li, S Liu, N Lopes, KV Lotov, W Lu, J Machacek, S Mandry, I Martin, R Martorelli, M Martyanov, S Mazzoni, M Meddahi, L Merminga, O Mete, VA Minakov, J Mitchell, J Moody, A-S Mueller, Z Najmudin, TCQ Noakes, P Norreys, J Osterhoff, E Oez, A Pardons, K Pepitone, A Petrenko, G Plyushchev, J Pozimski, A Pukhov, O Reimann, K Rieger, S Roesler, H Ruhl, T Rusnak, E Salveter, N Savard, J Schmidt, H von der Schmitt, A Seryi, E Shaposhnikova, ZM Sheng, R Sherwood, L Silva, F Simon, L Soby, AP Sosedkin, RI Spitsyn, T Tajima, R Tarkeshian, H Timko, R Trines, T Tueckmantel, PV Tuev, M Turner, E Velotti, V Verzilov, J Vieira, H Vincke, Y Wei, CP Welsch, M Wing, G Xia, V Yakimenko, H Zhang, F Zimmermann
More details from the publisher
More details

Dense plasma heating by crossing relativistic electron beams

Physical Review E American Physical Society 95:1 (2016) 013211

Authors:

Naren Ratan, Nathan J Sircombe, Luke A Ceurvorst, James Sadler, MF Kasim, J Holloway, Matthew C Levy, R Trines, R Bingham, Peter Norreys

Abstract:

Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet