Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Nonlinear parametric resonance of relativistic electrons with a linearly polarized laser pulse in a plasma channel

Physics of Plasmas American Institute of Physics 24:4 (2017) 043105

Authors:

TW Huang, CT Zhou, APL Robinson, B Qiao, AV Arefiev, Peter Norreys, XT He, SC Ruan

Abstract:

The direct laser-acceleration mechanism, nonlinear parametric resonance, of relativistic electrons in a linearly polarized laser-produced plasma channel is examined by a self-consistent model including the relativistic laser dispersion in plasmas. Nonlinear parametric resonance can be excited, and the oscillation amplitude of electrons grows exponentially when the betatron frequency of electron motion varies roughly twice the natural frequency of the oscillator. It is shown analytically that the region of parametric resonance is defined by the self-similar parameter ne/nca0. The width of this region decreases with ne/nca0, but the energy gain and oscillation amplitude increases. In this regime, the electron transverse momentum grows faster than that in the linear classical resonance regime.
More details from the publisher
Details from ORA
More details

Quantitative shadowgraphy and proton radiography for large intensity modulations

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics American Physical Society (2017)

Authors:

Muhammad Kasim, Luke Ceurvorst, Naren Ratan, James Sadler, Nicholas Chen, Alexander Savert, Raoul Trines, Robert Bingham, Philip N Burrows, Malte C Kaluza, Peter Norreys

Abstract:

Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the non-linear nature of the process. Here, a novel method to retrieve quantitative information from shadowgrams, based on computational geometry, is presented for the first time. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and post-processing techniques. This adds a powerful new tool for research in various fields in engineering and physics for both techniques.
More details from the publisher
Details from ORA
More details
More details

High Orbital Angular Momentum Harmonic Generation

Physical Review Letters American Physical Society 117:26 (2016)

Authors:

J Vieira, RMGM Trines, RA Fonseca, JT Mendonça, R Bingham, Peter Norreys, LO Silva

Abstract:

We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.
More details from the publisher
Details from ORA
More details
More details

Infinite dimensional optimistic optimisation with applications on physical systems

(2016)

Authors:

Muhammad F Kasim, Peter A Norreys
More details from the publisher

Essential criteria for efficient pulse amplification via Raman and Brillouin scattering

(2016)

Authors:

RMGM Trines, EP Alves, E Webb, J Vieira, F Fiuza, RA Fonseca, LO Silva, J Sadler, N Ratan, L Ceurvorst, MF Kasim, M Tabak, D Froula, D Haberberger, PA Norreys, RA Cairns, R Bingham
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet