Reliable heatwave attribution based on successful operational weather forecasts
(2022)
Bell's theorem, non-computability and conformal cyclic cosmology: A top-down approach to quantum gravity
AVS Quantum Science American Vacuum Society 3:4 (2021) 040801
Forecast-based attribution of a winter heatwave within the limit of predictability
Proceedings of the National Academy of Sciences National Academy of Sciences 118:49 (2021) e2112087118
Abstract:
The question of how humans have influenced individual extreme weather events is both scientifically and socially important. However, deficiencies in climate models’ representations of key mechanisms within the process chains that drive weather reduce our confidence in estimates of the human influence on extreme events. We propose that using forecast models that successfully predicted the event in question could increase the robustness of such estimates. Using a successful forecast means we can be confident that the model is able to faithfully represent the characteristics of the specific extreme event. We use this forecast-based methodology to estimate the direct radiative impact of increased CO2 concentrations (one component, but not the entirety, of human influence) on the European heatwave of February 2019.Compressing atmospheric data into its real information content.
Nature computational science 1:11 (2021) 713-724
Abstract:
Hundreds of petabytes are produced annually at weather and climate forecast centers worldwide. Compression is essential to reduce storage and to facilitate data sharing. Current techniques do not distinguish the real from the false information in data, leaving the level of meaningful precision unassessed. Here we define the bitwise real information content from information theory for the Copernicus Atmospheric Monitoring Service (CAMS). Most variables contain fewer than 7 bits of real information per value and are highly compressible due to spatio-temporal correlation. Rounding bits without real information to zero facilitates lossless compression algorithms and encodes the uncertainty within the data itself. All CAMS data are 17× compressed relative to 64-bit floats, while preserving 99% of real information. Combined with four-dimensional compression, factors beyond 60× are achieved. A data compression Turing test is proposed to optimize compressibility while minimizing information loss for the end use of weather and climate forecast data.More accuracy with less precision
Quarterly Journal of the Royal Meteorological Society Wiley 147:741 (2021) 4358-4370