Beyond skill scores: exploring sub‐seasonal forecast value through a case‐study of French month‐ahead energy prediction
Quarterly Journal of the Royal Meteorological Society Wiley 146:733 (2020) 3623-3637
Abstract:
We quantify the value of sub‐seasonal forecasts for a real‐world prediction problem: the forecasting of French month‐ahead energy demand. Using surface temperature as a predictor, we construct a trading strategy and assess the financial value of using meteorological forecasts, based on actual energy demand and price data. We show that forecasts with lead times greater than two weeks can have value for this application, both on their own and in conjunction with shorter‐range forecasts, especially during boreal winter. We consider a cost/loss framework based on this example, and show that, while it captures the performance of the short‐range forecasts well, it misses the marginal value present in medium‐range forecasts. We also contrast our assessment of forecast value to that given by traditional skill scores, which we show could be misleading if used in isolation. We emphasise the importance of basing assessment of forecast skill on variables actually used by end‐users.Short-term tests validate long-term estimates of climate change
Nature Springer Nature 582:7811 (2020) 185-186
Rethinking superdeterminism
Frontiers in Physics Frontiers 8 (2020) 139
Abstract:
Quantum mechanics has irked physicists ever since its conception more than 100 years ago. While some of the misgivings, such as it being unintuitive, are merely aesthetic, quantum mechanics has one serious shortcoming: it lacks a physical description of the measurement process. This “measurement problem” indicates that quantum mechanics is at least an incomplete theory—good as far as it goes, but missing a piece—or, more radically, is in need of complete overhaul. Here we describe an approach which may provide this sought-for completion or replacement: Superdeterminism. A superdeterministic theory is one which violates the assumption of Statistical Independence (that distributions of hidden variables are independent of measurement settings). Intuition suggests that Statistical Independence is an essential ingredient of any theory of science (never mind physics), and for this reason Superdeterminism is typically discarded swiftly in any discussion of quantum foundations. The purpose of this paper is to explain why the existing objections to Superdeterminism are based on experience with classical physics and linear systems, but that this experience misleads us. Superdeterminism is a promising approach not only to solve the measurement problem, but also to understand the apparent non-locality of quantum physics. Most importantly, we will discuss how it may be possible to test this hypothesis in an (almost) model independent way.Discretization of the Bloch sphere, fractal invariant sets and Bell's theorem.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences The Royal Society 476:2236 (2020) 20190350