Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Palmer

Emeritus

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Tim.Palmer@physics.ox.ac.uk
Telephone: 01865 (2)72897
Robert Hooke Building, room S43
  • About
  • Publications

Human Creativity and Consciousness: Unintended Consequences of the Brain’s Extraordinary Energy Efficiency?

(2020)
More details from the publisher
Details from ArXiV

Rethinking Superdeterminism

ArXiv 1912.06462 (2019)

Authors:

S Hossenfelder, TN Palmer
Details from ArXiV

Optimising the use of ensemble information in numerical weather forecasts of wind power generation

Environmental Research Letters IOP Publishing 14:12 (2019) 124086

Authors:

JDY Stanger, I Finney, Antje Weisheimer, T Palmer

Abstract:

Electricity generation output forecasts for wind farms across Europe use numerical weather prediction (NWP) models. These forecasts influence decisions in the energy market, some of which help determine daily energy prices or the usage of thermal power generation plants. The predictive skill of power generation forecasts has an impact on the profitability of energy trading strategies and the ability to decrease carbon emissions. Probabilistic ensemble forecasts contain valuable information about the uncertainties in a forecast. The energy market typically takes basic approaches to using ensemble data to obtain more skilful forecasts. There is, however, evidence that more sophisticated approaches could yield significant further improvements in forecast skill and utility.In this letter, the application of ensemble forecasting methods to the aggregated electricity generation output for wind farms across Germany is investigated using historical ensemble forecasts from the European Centre for Medium-Range Weather Forecasting (ECMWF). Multiple methods for producing a single forecast from the ensemble are tried and tested against traditional deterministic methods. All the methods exhibit positive skill, relative to a climatological forecast, out to a lead time of at least seven days. A wind energy trading strategy involving ensemble data is implemented and produces significantly more profit than trading strategies based on single forecasts. It is thus found that ensemble spread is a good predictor for wind power forecast uncertainty and is extremely valuable at informing wind energy trading strategy.
More details from the publisher
Details from ORA
More details

The scientific challenge of understanding and estimating climate change.

Proceedings of the National Academy of Sciences of the United States of America 116:49 (2019) 24390-24395

Authors:

Tim Palmer, Bjorn Stevens

Abstract:

Given the slow unfolding of what may become catastrophic changes to Earth's climate, many are understandably distraught by failures of public policy to rise to the magnitude of the challenge. Few in the science community would think to question the scientific response to the unfolding changes. However, is the science community continuing to do its part to the best of its ability? In the domains where we can have the greatest influence, is the scientific community articulating a vision commensurate with the challenges posed by climate change? We think not.
More details from the publisher
Details from ORA
More details
More details

The impact of a stochastic parameterization scheme on climate sensitivity in EC‐Earth

Journal of Geophysical Research: Atmospheres American Geophysical Union 124:23 (2019) 12726-12740

Authors:

Kristian Strommen, PAG Watson, TN Palmer

Abstract:

Stochastic schemes, designed to represent unresolved sub-grid scale variability, are frequently used in short and medium-range weather forecasts, where they are found to improve several aspects of the model. In recent years, the impact of stochastic physics has also been found to be beneficial for the model's long term climate. In this paper, we demonstrate for the first time that the inclusion of a stochastic physics scheme can notably affect a model's projection of global warming, as well as its historical climatological global temperature. Specifically, we find that when including the 'stochastically perturbed parametrisation tendencies' scheme (SPPT) in the fully coupled climate model EC-Earth v3.1, the predicted level of global warming between 1850 and 2100 is reduced by 10% under an RCP8.5 forcing scenario. We link this reduction in climate sensitivity to a change in the cloud feedbacks with SPPT. In particular, the scheme appears to reduce the positive low cloud cover feedback, and increase the negative cloud optical feedback. A key role is played by a robust, rapid increase in cloud liquid water with SPPT, which we speculate is due to the scheme's non-linear interaction with condensation.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet