Seasonal to annual ocean forecasting skill and the role of model and observational uncertainty
Quarterly Journal of the Royal Meteorological Society Wiley 144:715 (2018) 1947-1964
Abstract:
Accurate forecasts of the ocean state and the estimation of forecast uncertainties are crucial when it comes to providing skilful seasonal predictions. In this study we analyse the predictive skill and reliability of the ocean component in a seasonal forecasting system. Furthermore, we assess the effects of accounting for model and observational uncertainties. Ensemble forcasts are carried out with an updated version of the ECMWF seasonal forecasting model System 4, with a forecast length of ten months, initialized every May between 1981 and 2010. We find that, for essential quantities such as sea surface temperature and upper ocean 300 m heat content, the ocean forecasts are generally underdispersive and skilful beyond the first month mainly in the Tropics and parts of the North Atlantic. The reference reanalysis used for the forecast evaluation considerably affects diagnostics of forecast skill and reliability, throughout the entire ten‐month forecasts but mostly during the first three months. Accounting for parametrization uncertainty by implementing stochastic parametrization perturbations has a positive impact on both reliability (from month 3 onwards) as well as forecast skill (from month 8 onwards). Skill improvements extend also to atmospheric variables such as 2 m temperature, mostly in the extratropical Pacific but also over the midlatitudes of the Americas. Hence, while model uncertainty impacts the skill of seasonal forecasts, observational uncertainty impacts our assessment of that skill. Future ocean model development should therefore aim not only to reduce model errors but to simultaneously assess and estimate uncertainties.Choosing the optimal numerical precision for data assimilation in the presence of model error
Journal of Advances in Modeling Earth Systems American Geophysical Union 10:9 (2018) 2177-2191
Abstract:
The use of reduced numerical precision within an atmospheric data assimilation system is investigated. An atmospheric model with a spectral dynamical core is used to generate synthetic observations, which are then assimilated back into the same model using an ensemble Kalman filter. The effect on the analysis error of reducing precision from 64 bits to only 22 bits is measured and found to depend strongly on the degree of model uncertainty within the system. When the model used to generate the observations is identical to the model used to assimilate observations, the reduced‐precision results suffer substantially. However, when model error is introduced by changing the diffusion scheme in the assimilation model or by using a higher‐resolution model to generate observations, the difference in analysis quality between the two levels of precision is almost eliminated. Lower‐precision arithmetic has a lower computational cost, so lowering precision could free up computational resources in operational data assimilation and allow an increase in ensemble size or grid resolution.Discretisation of the Bloch Sphere, Fractal Invariant Sets and Bell's Theorem
ArXiv 1804.01734 (2018)
A power law for reduced precision at small spatial scales: Experiments with an SQG model
Quarterly Journal of the Royal Meteorological Society Wiley 144:713 (2018) 1179-1188
Abstract:
Representing all variables in double‐precision in weather and climate models may be a waste of computer resources, especially when simulating the smallest spatial scales, which are more difficult to accurately observe and model than are larger scales. Recent experiments have shown that reducing to single‐precision would allow real‐world models to run considerably faster without incurring significant errors. Here, the effects of reducing precision to even lower levels are investigated in the Surface Quasi‐Geostrophic system, an idealised system that exhibits a similar power‐law spectrum to that of energy in the real atmosphere, by emulating reduced precision on conventional hardware. It is found that precision can be reduced much further for the smallest scales than the largest scales without inducing significant macroscopic error, according to a ‐4/3 power law, motivating the construction of a ‘scale‐selective’ reduced‐precision model that performs as well as a double‐precision control in short‐ and long‐range forecasts but for a much lower estimated computational cost. A similar scale‐selective approach in real‐world models could save resources that could be re‐invested to allow these models to be run at greater resolution, complexity or ensemble size, potentially leading to more efficient, more accurate forecasts.Flow dependent ensemble spread in seasonal forecasts of the boreal winter extratropics
Atmospheric Science Letters Royal Meteorological Society 19:5 (2018) e815