Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Palmer

Emeritus

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Tim.Palmer@physics.ox.ac.uk
Telephone: 01865 (2)72897
Robert Hooke Building, room S43
  • About
  • Publications

Experimental Non-Violation of the Bell Inequality

ArXiv 1709.01069 (2017)
Details from ArXiV

A Gravitational Theory of the Quantum

ArXiv 1709.00329 (2017)
Details from ArXiV

Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures

COMPUTER PHYSICS COMMUNICATIONS 221 (2017) 160-173

Authors:

Francis P Russell, Peter D Duben, Xinyu Niu, Wayne Luk, TN Palmer
More details from the publisher
Details from ORA
More details

Variability in seasonal forecast skill of Northern Hemisphere winters over the twentieth century

Geophysical Research Letters American Geophysical Union (AGU) (2017)

Authors:

Christopher O'Reilly, J Heatley, Dave MacLeod, Antje Weisheimer, Timothy Palmer, N Schaller, T Woollings

Abstract:

©2017. American Geophysical Union. All Rights Reserved. Seasonal hindcast experiments, using prescribed sea surface temperatures (SSTs), are analyzed for Northern Hemisphere winters from 1900 to 2010. Ensemble mean Pacific/North American index (PNA) skill varies dramatically, dropping toward zero during the mid-twentieth century, with similar variability in North Atlantic Oscillation (NAO) hindcast skill. The PNA skill closely follows the correlation between the observed PNA index and tropical Pacific SST anomalies. During the mid-century period the PNA and NAO hindcast errors are closely related. The drop in PNA predictability is due to mid-century negative PNA events, which were not forced in a predictable manner by tropical Pacific SST anomalies. Overall, negative PNA events are less predictable and seem likely to arise more from internal atmospheric variability than positive PNA events. Our results suggest that seasonal forecasting systems assessed over the recent 30 year period may be less skillful in periods, such as the mid-twentieth century, with relatively weak forcing from tropical Pacific SST anomalies.
More details from the publisher
Details from ORA
More details

Stochastic subgrid-scale ocean mixing: Impacts on low-frequency variability

Journal of Climate American Meteorological Society 30:13 (2017) 4997-5019

Authors:

Stephan Juricke, Timothy N Palmer, Laure Zanna

Abstract:

In global ocean models, the representation of small-scale, high-frequency processes considerably influences the large-scale oceanic circulation and its low-frequency variability. This study investigates the impact of stochastic perturbation schemes based on three different subgrid-scale parameterizations in multidecadal ocean-only simulations with the ocean model NEMO at 1° resolution. The three parameterizations are an enhanced vertical diffusion scheme for unstable stratification, the Gent-McWilliams (GM) scheme, and a turbulent kinetic energy mixing scheme, all commonly used in state-of-the-art ocean models. The focus here is on changes in interannual variability caused by the comparatively high-frequency stochastic perturbations with subseasonal decorrelation time scales. These perturbations lead to significant improvements in the representation of low-frequency variability in the ocean, with the stochastic GM scheme showing the strongest impact. Interannual variability of the Southern Ocean eddy and Eulerian streamfunctions is increased by an order of magnitude and by 20%, respectively. Interannual sea surface height variability is increased by about 20%-25% as well, especially in the Southern Ocean and in the Kuroshio region, consistent with a strong underestimation of interannual variability in the model when compared to reanalysis and altimetry observations. These results suggest that enhancing subgrid-scale variability in ocean models can improve model variability and potentially its response to forcing on much longer time scales, while also providing an estimate of model uncertainty.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet