Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
WASp-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

The hot Jupiter WASP-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

Credit: Vivien Parmentier

Vivien Parmentier

Visitor

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
vivien.parmentier@physics.ox.ac.uk
Telephone: 01865282458
Atmospheric Physics Clarendon Laboratory, room 116
Current website
  • About
  • Publications

Vertical tracer mixing in hot Jupiter atmospheres

Astrophysical Journal American Astronomical Society 881:2 (2019) 152

Authors:

Thaddeus D Komacek, Adam P Showman, Vivien Parmentier

Abstract:

Aerosols appear to be ubiquitous in close-in gas giant atmospheres, and disequilibrium chemistry likely impacts the emergent spectra of these planets. Lofted aerosols and disequilibrium chemistry are caused by vigorous vertical transport in these heavily irradiated atmospheres. Here we numerically and analytically investigate how vertical transport should change over the parameter space of spin-synchronized gas giants. In order to understand how tracer transport depends on planetary parameters, we develop an analytic theory to predict vertical velocities and mixing rates (K zz) and compare the results to our numerical experiments. We find that both our theory and numerical simulations predict that if the vertical mixing rate is described by an eddy diffusivity, then this eddy diffusivity K zz should increase with increasing equilibrium temperature, decreasing frictional drag strength, and increasing chemical loss timescales. We find that the transition in our numerical simulations between circulation dominated by a superrotating jet and that with solely day-to-night flow causes a marked change in the vertical velocity structure and tracer distribution. The mixing ratio of passive tracers is greatest for intermediate drag strengths that correspond to this transition between a superrotating jet with columnar vertical velocity structure and day-to-night flow with upwelling on the dayside and downwelling on the nightside. Finally, we present analytic solutions for K zz as a function of planetary effective temperature, chemical loss timescales, and other parameters, for use as input to 1D chemistry models of spin-synchronized gas giant atmospheres.
More details from the publisher
Details from ORA
More details

Observing exoplanets in the near-infrared from a high altitude balloon platform

Journal of Astronomical Instrumentation World Scientific Publishing 8:3 (2019) 1950011

Authors:

PC Nagler, B Edwards, B Kilpatrick, NK Lewis, P Maxted, C Barth Netterfield, V Parmentier, E Pascale, S Sarkar, GS Tucker, I Waldmann

Abstract:

Although there exists a large sample of known exoplanets, little data exists that can be used to study their global atmospheric properties. This deficiency can be addressed by performing phase-resolved spectroscopy — continuous spectroscopic observations of a planet’s entire orbit about its host star — of transiting exoplanets. Planets with characteristics suitable for atmospheric characterization have orbits of several days, thus phase curve observations are highly resource intensive, especially for shared use facilities. In this work, we show that an infrared spectrograph operating from a high altitude balloon platform can perform phase-resolved spectroscopy of hot Jupiter-type exoplanets with performance comparable to a space-based telescope. Using the EXoplanet Climate Infrared TElescope (EXCITE) experiment as an example, we quantify the impact of the most important systematic effects that we expect to encounter from a balloon platform. We show an instrument like EXCITE will have the stability and sensitivity to significantly advance our understanding of exoplanet atmospheres. Such an instrument will both complement and serve as a critical bridge between current and future space-based near-infrared spectroscopic instruments.
More details from the publisher
Details from ORA
More details

The effect of 3D transport-induced disequilibrium carbon chemistry on the atmospheric structure, phase curves, and emission spectra of hot Jupiter HD 189733b

Astrophysical Journal IOP Publishing 880:1 (2019) 14

Authors:

Maria E Steinrueck, Vivien Parmentier, Adam P Showman, Joshua D Lothringer, Roxana E Lupu

Abstract:

On hot Jupiter exoplanets, strong horizontal and vertical winds should homogenize the abundances of the important absorbers CH4 and CO much faster than chemical reactions restore chemical equilibrium. This effect, typically neglected in general circulation models (GCMs), has been suggested to explain discrepancies between observed infrared light curves and those predicted by GCMs. On the nightsides of several hot Jupiters, GCMs predict outgoing fluxes that are too large, especially in the Spitzer 4.5 μm band. We modified the SPARC/MITgcm to include disequilibrium abundances of CH4, CO, and H2O by assuming that the CH4/CO ratio is constant throughout the simulation domain. We ran simulations of hot Jupiter HD 189733b with eight CH4/CO ratios. In the more likely CO-dominated regime, we find temperature changes ≥50–100 K compared to the simulation for equilibrium chemistry across large regions. This effect is large enough to affect predicted emission spectra and should thus be included in GCMs of hot Jupiters with equilibrium temperatures between 600 and 1300 K. We find that spectra in regions with strong methane absorption, including the Spitzer 3.6 and 8 μm bands, are strongly impacted by disequilibrium abundances. We expect chemical quenching to result in much larger nightside fluxes in the 3.6 μm band, in stark contrast to observations. Meanwhile, we find almost no effect on predicted observations in the 4.5 μm band, because the changes in opacity due to CO and H2O offset each other. We thus conclude that disequilibrium carbon chemistry cannot explain the observed low nightside fluxes in the 4.5 μm band.
More details from the publisher
Details from ORA
More details

Climate of an ultra hot Jupiter: Spectroscopic phase curve of WASP-18b with HST/WFC3

Astronomy and Astrophysics EDP Sciences 625 (2019) A136

Authors:

Jacob Arcangeli, Jean-Michel Desert, Vivien Parmentier, Kevin B Stevenson, Jacob L Bean, Michael R Line, Laura Kreidberg, Jonathan J Fortney, Adam P Showman

Abstract:

We present the analysis of a full-orbit, spectroscopic phase curve of the ultra hot Jupiter (UHJ) WASP-18b, obtained with the Wide Field Camera 3 aboard the Hubble Space Telescope. We measured the normalised day-night contrast of the planet as >0.96 in luminosity: the disc-integrated dayside emission from the planet is at 964 ± 25 ppm, corresponding to 2894 ± 30 K, and we place an upper limit on the nightside emission of <32 ppm or 1430 K at the 3σ level. We also find that the peak of the phase curve exhibits a small, but significant offset in brightness of 4.5 ± 0.5° eastward. We compare the extracted phase curve and phase-resolved spectra to 3D global circulation models and find that broadly the data can be well reproduced by some of these models. We find from this comparison several constraints on the atmospheric properties of the planet. Firstly we find that we need efficient drag to explain the very inefficient day-night recirculation observed. We demonstrate that this drag could be due to Lorentz-force drag by a magnetic field as weak as 10 gauss. Secondly, we show that a high metallicity is not required to match the large day-night temperature contrast. In fact, the effect of metallicity on the phase curve is different from cooler gas-giant counterparts because of the high-temperature chemistry in the atmosphere of WASP-18b. Additionally, we compared the current UHJ spectroscopic phase curves, WASP-18b and WASP-103b, and show that these two planets provide a consistent picture with remarkable similarities in their measured and inferred properties. However, key differences in these properties, such as their brightness offsets and radius anomalies, suggest that UHJ could be used to separate between competing theories for the inflation of gas-giant planets.
More details from the publisher
Details from ORA
More details

From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context

ASTRONOMY & ASTROPHYSICS 617 (2018) ARTN A110

Authors:

Vivien Parmentier, Mike R Line, Jacob L Bean, Megan Mansfield, Laura Kreidberg, Roxana Lupu, Channon Visscher, Jean-Michel Desert, Jonathan J Fortney, Magalie Deleuil, Jacob Arcangeli, Adam P Showman, Mark S Marley

Abstract:

Context. A new class of exoplanets has emerged: the ultra hot Jupiters, the hottest close-in gas giants. The majority of them have weaker-than-expected spectral features in the 1.1−1.7 µm bandpass probed by HST/WFC3 but stronger spectral features at longer wavelengths probed by Spitzer. This led previous authors to puzzling conclusions about the thermal structures and chemical abundances of these planets. Aims. We investigate how thermal dissociation, ionization, H − opacity, and clouds shape the thermal structures and spectral properties of ultra hot Jupiters. Methods. We use the SPARC/MITgcm to model the atmospheres of four ultra hot Jupiters and discuss more thoroughly the case of WASP-121b. We expand our findings to the whole population of ultra hot Jupiters through analytical quantification of the thermal dissociation and its influence on the strength of spectral features. Results. We predict that most molecules are thermally dissociated and alkalies are ionized in the dayside photospheres of ultra hot Jupiters. This includes H2O, TiO, VO, and H2 but not CO, which has a stronger molecular bond. The vertical molecular gradient created by the dissociation significantly weakens the spectral features from H2O while the 4.5 µm CO feature remains unchanged. The water band in the HST/WFC3 bandpass is further weakened by the continuous opacity of the H − ions. Molecules are expected to recombine before reaching the limb, leading to order of magnitude variations of the chemical composition and cloud coverage between the limb and the dayside. Conclusions. Molecular dissociation provides a qualitative understanding of the lack of strong spectral features of water in the 1−2 µm bandpass observed in most ultra hot Jupiters. Quantitatively, our model does not provide a satisfactory match to the WASP-121b emission spectrum. Together with WASP-33b and Kepler-33Ab, they seem the outliers among the population of ultra hot Jupiters, in need of a more thorough understanding
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet