An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres
The Astrophysical Journal American Astronomical Society 845:2 (2017) L20-L20
THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA
The Astrophysical Journal American Astronomical Society 820:1 (2016) 78-78
Unveiling the atmospheres of giant exoplanets with an EChO-class mission
ArXiv 1401.3673 (2014)
Abstract:
More than a thousand exoplanets have been discovered over the last decade. Perhaps more excitingly, probing their atmospheres has become possible. With current data we have glimpsed the diversity of exoplanet atmospheres that will be revealed over the coming decade. However, numerous questions concerning their chemical composition, thermal structure, and atmospheric dynamics remain to be answered. More observations of higher quality are needed. In the next years, the selection of a space-based mission dedicated to the spectroscopic characterization of exoplanets would revolutionize our understanding of the physics of planetary atmospheres. Such a mission was proposed to the ESA cosmic vision program in 2014. Our paper is therefore based on the planned capabilities of the Exoplanet Characterization Observatory (EChO), but it should equally apply to any future mission with similar characteristics. With its large spectral coverage ($4-16\, \rm{\mu m}$), high spectral resolution ($\Delta\lambda/\lambda>300$ below $5\,\rm{\mu m}$ and $\Delta\lambda/\lambda>30$ above $5\,\rm{\mu m}$) and $1.5\rm{m}$ mirror, a future mission such as EChO will provide spectrally resolved transit lightcurves, secondary eclipses lightcurves, and full phase curves of numerous exoplanets with an unprecedented signal-to-noise ratio. In this paper, we review some of today's main scientific questions about gas giant exoplanets atmospheres, for which a future mission such as EChO will bring a decisive contribution.3D mixing in hot Jupiter atmospheres. I. application to the day/night cold trap in HD 209458b
Astronomy and Astrophysics EDP Sciences
Abstract:
Hot Jupiters exhibit atmospheric temperatures ranging from hundreds to thousands of Kelvin. Because of their large day-night temperature differences, condensable species that are stable in the gas phase on the dayside, such as TiO and silicates, may condense and gravitationally settle on the nightside. Atmospheric circulation may counterbalance this tendency to gravitationally settle. This three dimensional (3D) mixing of chemical species has not previously been studied for hot Jupiters, yet it is crucial to assess the existence and distribution of TiO and silicates in the atmospheres of these planets. We perform 3D global circulation models of HD209458b including passive tracers that advect with the 3D flow, including a source/sink on the nightside to represent condensation and gravitational settling of haze particles. We show that global advection patterns produce strong vertical mixing that can keep condensable species lofted as long as they are trapped in particles of sizes of a few microns or less on the night side. We show that vertical mixing results not from small-scale convection but from the large-scale circulation driven by the day-night heating contrast. Although this vertical mixing is not diffusive in any rigorous sense, a comparison of our results with idealized diffusion models allows a rough estimate of the vertical diffusion coefficient. Kzz=5x10**4/Sqrt(Pbar) m2/s can be used in 1D models of HD 209458b. Moreover, our models exhibit strong spatial and temporal variability in the tracer concentration that could result in observable variations during transit or secondary eclipse measurements. Finally, we apply our model to the case of TiO in HD209458b and show that the day-night cold trap would deplete TiO if it condenses into particles bigger than a few microns on the planet's night side, making it unable to create the observed stratosphere of the planet.A non-grey analytical model for irradiated atmospheres. II: Analytical vs. numerical solutions
Astronomy and Astrophysics EDP Sciences 574 A35-A35