Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
WASp-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

The hot Jupiter WASP-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

Credit: Vivien Parmentier

Vivien Parmentier

Visitor

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
vivien.parmentier@physics.ox.ac.uk
Telephone: 01865282458
Atmospheric Physics Clarendon Laboratory, room 116
Current website
  • About
  • Publications

All along the line of sight: a closer look at opening angles and absorption regions in the atmospheres of transiting exoplanets

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:1 (2021) 620-629

Authors:

Joost P Wardenier, Vivien Parmentier, Elspeth KH Lee
More details from the publisher
More details
More details

Mapping the pressure-dependent day-night temperature contrast of a strongly irradiated atmosphere with HST spectroscopic phase curve

Astronomical Journal IOP Publishing 163:1 (2021) 8

Authors:

Ben WP Lew, Daniel Apai, Yifan Zhou, Mark Marley, Lc Mayorga, Xianyu Tan, Vivien Parmentier, Sarah Casewell, Siyi Xu

Abstract:

Many brown dwarfs are on ultrashort-period and tidally locked orbits around white dwarf hosts. Because of these small orbital separations, the brown dwarfs are irradiated at levels similar to hot Jupiters. Yet, they are easier to observe than hot Jupiters because white dwarfs are fainter than main-sequence stars at near-infrared wavelengths. Irradiated brown dwarfs are, therefore, ideal hot Jupiter analogs for studying the atmospheric response under strong irradiation and fast rotation. We present the 1.1–1.67 μm spectroscopic phase curve of the irradiated brown dwarf (SDSS1411-B) in the SDSS J141126.20 + 200911.1 brown dwarf–white dwarf binary with the near-infrared G141 grism of the Hubble Space Telescope Wide Field Camera 3. SDSS1411-B is a 50MJup brown dwarf with an irradiation temperature of 1300 K and has an orbital period of 2.02864 hr. Our best-fit model suggests a phase-curve amplitude of 1.4% and places an upper limit of 11° for the phase offset from the secondary eclipse. After fitting the white dwarf spectrum, we extract the phase-resolved brown dwarf emission spectra. We report a highly wavelength-dependent day–night spectral variation, with a water-band flux variation of about 360% ± 70% and a comparatively small J-band flux variation of 37% ± 2%. By combining the atmospheric modeling results and the day–night brightness temperature variations, we derive a pressure-dependent temperature contrast. We discuss the difference in the spectral features of SDSS1411-B and hot Jupiter WASP-43b, as well as the lower-than-predicted day–night temperature contrast of J4111-BD. Our study provides the high-precision observational constraints on the atmospheric structures of an irradiated brown dwarf at different orbital phases.
More details from the publisher
Details from ORA
More details

Transit timings variations in the three-planet system: TOI-270

Monthly Notices of the Royal Astronomical Society Oxford University Press 510:4 (2021) 5464-5485

Authors:

Laurel Kaye, Shreyas Vissapragada, Maximilian N Gunther, Suzanne Aigrain, Thomas Mikal-Evans, Eric LN Jensen, Hannu Parviainen, Francisco J Pozuelos, Lyu Abe, Jack S Acton, Abdelkrim Agabi, Douglas R Alves, David R Anderson, David J Armstrong, Khalid Barkaoui, Oscar Barragan, Bjorn Benneke, Patricia T Boyd, Rafael Brahm, Ivan Bruni, Edward M Bryant, Matthew R Burleigh, Sarah L Casewell, David Ciardi, Ryan Cloutier, Karen A Collins, Kevin I Collins, Dennis M Conti, Ian JM Crossfield, Nicolas Crouzet, Tansu Daylan, Diana Dragomir, Georgina Dransfield, Daniel Fabrycky, Michael Fausnaugh, Tianjun Gan, Samuel Gill, Michael Gillon, Michael R Goad, Varoujan Gorjian, Michael Greklek-McKeon, Natalia Guerrero, Tristan Guillot, Emmanuel Jehin, Js Jenkins, Monika Lendl, Jacob Kamler, Stephen R Kane, John F Kielkopf, Michelle Kunimoto

Abstract:

We present ground- and space-based photometric observations of TOI-270 (L231-32), a system of three transiting planets consisting of one super-Earth and two sub-Neptunes discovered by TESS around a bright (K-mag = 8.25) M3V dwarf. The planets orbit near low-order mean-motion resonances (5:3 and 2:1) and are thus expected to exhibit large transit timing variations (TTVs). Following an extensive observing campaign using eight different observatories between 2018 and 2020, we now report a clear detection of TTVs for planets c and d, with amplitudes of ∼10 min and a super-period of ∼3 yr, as well as significantly refined estimates of the radii and mean orbital periods of all three planets. Dynamical modelling of the TTVs alone puts strong constraints on the mass ratio of planets c and d and on their eccentricities. When incorporating recently published constraints from radial velocity observations, we obtain masses of Mb=1.48± 0.18, M⊕, Mc=6.20± 0.31, M⊕, and Md=4.20± 0.16, M⊕ for planets b, c, and d, respectively. We also detect small but significant eccentricities for all three planets: eb = 0.0167 ± 0.0084, ec = 0.0044 ± 0.0006, and ed = 0.0066 ± 0.0020. Our findings imply an Earth-like rocky composition for the inner planet, and Earth-like cores with an additional He/H2O atmosphere for the outer two. TOI-270 is now one of the best constrained systems of small transiting planets, and it remains an excellent target for atmospheric characterization.
More details from the publisher
Details from ORA
More details

A unique hot Jupiter spectral sequence with evidence for compositional diversity

Nature Astronomy Springer Nature 5:12 (2021) 1224-1232

Authors:

Megan Mansfield, Michael R Line, Jacob L Bean, Jonathan J Fortney, Vivien Parmentier, Lindsey Wiser, Eliza M-R Kempton, Ehsan Gharib-Nezhad, David K Sing, Mercedes López-Morales, Claire Baxter, Jean-Michel Désert, Mark R Swain, Gael M Roudier
More details from the publisher
More details

A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere

Nature Springer Nature 598:7882 (2021) 580-584

Authors:

Michael R Line, Matteo Brogi, Jacob L Bean, Siddharth Gandhi, Joseph Zalesky, Vivien Parmentier, Peter Smith, Gregory N Mace, Megan Mansfield, Eliza M-R Kempton, Jonathan J Fortney, Evgenya Shkolnik, Jennifer Patience, Emily Rauscher, Jean-Michel Désert, Joost P Wardenier
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet