Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
WASp-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

The hot Jupiter WASP-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

Credit: Vivien Parmentier

Vivien Parmentier

Visitor

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
vivien.parmentier@physics.ox.ac.uk
Telephone: 01865282458
Atmospheric Physics Clarendon Laboratory, room 116
Current website
  • About
  • Publications

The impact of mixing treatments on cloud modelling in 3D simulations of hot Jupiters

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 506:3 (2021) 4500-4515

Authors:

DA Christie, NJ Mayne, S Lines, V Parmentier, J Manners, I Boutle, B Drummond, T Mikal-Evans, DK Sing, K Kohary

Abstract:

ABSTRACT We present results of 3D hydrodynamical simulations of HD209458b including a coupled, radiatively active cloud model (eddysed). We investigate the role of the mixing by replacing the default convective treatment used in previous works with a more physically relevant mixing treatment (Kzz) based on global circulation. We find that uncertainty in the efficiency of sedimentation through the sedimentation factor fsed plays a larger role in shaping cloud thickness and its radiative feedback on the local gas temperatures – e.g. hotspot shift and day-to-night side temperature gradient – than the switch in mixing treatment. We demonstrate using our new mixing treatments that simulations with cloud scales that are a fraction of the pressure scale height improve agreement with the observed transmission spectra, the emission spectra, and the Spitzer 4.5 µm phase curve, although our models are still unable to reproduce the optical and ultraviolet transmission spectra. We also find that the inclusion of cloud increases the transit asymmetry in the optical between the east and west limbs, although the difference remains small ($\lesssim 1{{\ \rm per\ cent}}$).
More details from the publisher

Erratum: “Vertical Tracer Mixing in Hot Jupiter Atmospheres” (2019, ApJ, 881, 152)

The Astrophysical Journal American Astronomical Society 917:2 (2021) 112

Authors:

Thaddeus D Komacek, Adam P Showman, Vivien Parmentier
More details from the publisher
More details

The Air Over There: Exploring Exoplanet Atmospheres

Elements Mineralogical Society of America 17:4 (2021) 257-263

Authors:

Laura K Schaefer, Vivien Parmentier
More details from the publisher
More details

Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte Carlo radiative transfer

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 506:1 (2021) 1258-1283

Authors:

Joost P Wardenier, Vivien Parmentier, Elspeth KH Lee, Michael R Line, Ehsan Gharib-Nezhad
More details from the publisher
More details

Simulating gas giant exoplanet atmospheres with Exo-FMS: comparing semigrey, picket fence, and correlated-k radiative-transfer schemes

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 506:2 (2021) 2695-2711

Authors:

Elspeth KH Lee, Vivien Parmentier, Mark Hammond, Simon L Grimm, Daniel Kitzmann, Xianyu Tan, Shang-Min Tsai, Raymond T Pierrehumbert

Abstract:

Radiative-transfer (RT) is a fundamental part of modelling exoplanet atmospheres with general circulation models (GCMs). An accurate RT scheme is required for estimates of the atmospheric energy transport and for gaining physical insight from model spectra. We implement three RT schemes for Exo-FMS: semigrey, non-grey ‘picket fence’, and real gas with correlated-k. We benchmark the Exo-FMS GCM, using these RT schemes to hot Jupiter simulation results from the literature. We perform a HD 209458b-like simulation with the three schemes and compare their results. These simulations are then post-processed to compare their observable differences. The semigrey scheme results show qualitative agreement with previous studies in line with variations seen between GCM models. The real gas model reproduces well the temperature and dynamical structures from other studies. After post-processing our non-grey picket fence scheme compares very favourably with the real gas model, producing similar transmission spectra, emission spectra, and phase curve behaviours. Exo-FMS is able to reliably reproduce the essential features of contemporary GCM models in the hot gas giant regime. Our results suggest the picket fence approach offers a simple way to improve upon RT realism beyond semigrey schemes.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet